Patents by Inventor Sam Musallam

Sam Musallam has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130289522
    Abstract: Brain Machine Interfaces (BMIs) promise to improve the lives of many patients by providing a direct communication pathway between the brain and one or more external devices. As the brain is an electrochemical system additional signals may improve BMI performance beyond direct electrical signals. Further many psychiatric and neurological disorders such as Parkinson's disease, depression, dystonia, or obsessive compulsive disorder are related to neurotransmitter deficiencies or imbalances. Accordingly detection of neurotransmitter chemicals and/or management of these chemicals may enhance BMIs. Embodiments of the invention provide for implantable CMOS based target derived neurotrophic factor delivery microsystems and neurochemical sensors allowing neurotransmitter deficiencies or imbalances to be detected, monitored, and corrected.
    Type: Application
    Filed: April 24, 2013
    Publication date: October 31, 2013
    Inventors: Wissam Sam Musallam, Mohammad Pousinchi
  • Patent number: 8263986
    Abstract: Quantitative understanding of neural and biological activity at a sub-millimeter scale requires an integrated probe platform that combines biomarker sensors together with electrical stimulus/recording sites. Optically addressed biomarker sensors within such an integrated probe platform allows remote interrogation from the activity being measured. Monolithic or hybrid integrated silicon probe platforms would beneficially allow for accurate control of neural prosthetics, brain machine interfaces, etc as well as helping with complex brain diseases and disorders. According to the invention a silicon probe platform is provided employing ultra-thin silicon in conjunction with optical waveguides, optoelectronic interfaces, porous filter elements, and integrated CMOS circuitry. Such probes allowing simultaneously analysis of both neural electrical activities along with chemical activity derived from multiple biomolecular sensors with porous membrane filters.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: September 11, 2012
    Assignee: The Royal Institution for the Advancement of Learning/McGill University
    Inventors: Mohamad Hajj-Hassan, Vamsy Chodavarapu, Sam Musallam
  • Publication number: 20110024771
    Abstract: Quantitative understanding of neural and biological activity at a sub-millimeter scale requires an integrated probe platform that combines biomarker sensors together with electrical stimulus/recording sites. Optically addressed biomarker sensors within such an integrated probe platform allows remote interrogation from the activity being measured. Monolithic or hybrid integrated silicon probe platforms would beneficially allow for accurate control of neural prosthetics, brain machine interfaces, etc as well as helping with complex brain diseases and disorders. According to the invention a silicon probe platform is provided employing ultra-thin silicon in conjunction with optical waveguides, optoelectronic interfaces, porous filter elements, and integrated CMOS circuitry. Such probes allowing simultaneously analysis of both neural electrical activities along with chemical activity derived from multiple biomolecular sensors with porous membrane filters.
    Type: Application
    Filed: June 30, 2010
    Publication date: February 3, 2011
    Applicant: The Royal Institution for the Advancement of Learning / McGill University
    Inventors: Mohamad Hajj-Hassan, Vamsy Chodavarapu, Sam Musallam
  • Patent number: 7826894
    Abstract: In an embodiment, the invention relates to neural prosthetic devices in which control signals are based on the cognitive activity of the prosthetic user. The control signals may be used to control an array of external devices, such as prosthetics, computer systems, and speech synthesizers. Data obtained from monkeys' movement intentions were recorded, decoded with a computer algorithm, and used to position cursors on a computer screen. Not only the intended goals, but also the value of the reward the animals expected to receive at the end of each trial, were decoded from the recordings. The results indicate that brain activity related to cognitive variables can be a viable source of signals for the control of a cognitive-based neural prosthetic.
    Type: Grant
    Filed: March 22, 2005
    Date of Patent: November 2, 2010
    Assignee: California Institute of Technology
    Inventors: Sam Musallam, Richard A. Andersen, Brian D. Corneil, Bradley Greger, Hansjorg Scherberger
  • Publication number: 20050228515
    Abstract: In an embodiment, the invention relates to neural prosthetic devices in which control signals are based on the cognitive activity of the prosthetic user. The control signals may be used to control an array of external devices, such as prosthetics, computer systems, and speech synthesizers. Data obtained from monkeys' movement intentions were recorded, decoded with a computer algorithm, and used to position cursors on a computer screen. Not only the intended goals, but also the value of the reward the animals expected to receive at the end of each trial, were decoded from the recordings. The results indicate that brain activity related to cognitive variables can be a viable source of signals for the control of a cognitive-based neural prosthetic.
    Type: Application
    Filed: March 22, 2005
    Publication date: October 13, 2005
    Applicant: California Institute of Technology
    Inventors: Sam Musallam, Richard Andersen, Brian Corneil, Bradley Greger, Hansjorg Scherberger