Patents by Inventor Sam T. Hess

Sam T. Hess has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8217992
    Abstract: A method of performing 3D photoactivation microscope imaging includes providing a sample having a plurality of probes, each of the plurality of probes including a photo-activatable material. Probes from the plurality of probes are activated to form a sparse subset of probes, the sparse subset of probes having probes that are spatially separated by at least a microscope resolution. The sample is illuminated with a readout light source, and light emitted from activated probes is detected. Based on the light emission detected from the activated probes, localized three-dimensional positions of the activated probes are obtained.
    Type: Grant
    Filed: January 11, 2008
    Date of Patent: July 10, 2012
    Assignees: The Jackson Laboratory, University of Maine
    Inventors: Joerg Bewersdorf, Michael Darin Mason, Sam T. Hess
  • Patent number: 7880149
    Abstract: A microscopy system is configured for creating 3D images from individually localized probe molecules. The microscopy system includes a sample stage, an activation light source, a readout light source, a beam splitting device, at least one camera, and a controller. The activation light source activates probes of at least one probe subset of photo-sensitive luminescent probes, and the readout light source causes luminescence light from the activated probes. The beam splitting device splits the luminescence light into at least two paths to create at least two detection planes that correspond to the same or different number of object planes of the sample. The camera detects simultaneously the at least two detection planes, the number of object planes being represented in the camera by the same number of recorded regions of interest. The controller is programmable to combine a signal from the regions of interest into a 3D data.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: February 1, 2011
    Assignees: The Jackson Laboratory, University of Maine
    Inventors: Joerg Bewersdorf, Manuel F. Juette, Travis Gould, Sam T. Hess
  • Publication number: 20100283835
    Abstract: A method of performing 3D photoactivation microscope imaging includes providing a sample having a plurality of probes, each of the plurality of probes including a photo-activatable material. Probes from the plurality of probes are activated to form a sparse subset of probes, the sparse subset of probes having probes that are spatially separated by at least a microscope resolution. The sample is illuminated with a readout light source, and light emitted from activated probes is detected. Based on the light emission detected from the activated probes, localized three-dimensional positions of the activated probes are obtained.
    Type: Application
    Filed: January 11, 2008
    Publication date: November 11, 2010
    Inventors: Joerg Bewersdorf, Michael Darin Mason, Sam T. Hess
  • Publication number: 20100265318
    Abstract: A microscopy system is configured for creating 3D images from individually localized probe molecules. The microscopy system includes a sample stage, an activation light source, a readout light source, a beam splitting device, at least one camera, and a controller. The activation light source activates probes of at least one probe subset of photo-sensitive luminescent probes, and the readout light source causes luminescence light from the activated probes. The beam splitting device splits the luminescence light into at least two paths to create at least two detection planes that correspond to the same or different number of object planes of the sample. The camera detects simultaneously the at least two detection planes, the number of object planes being represented in the camera by the same number of recorded regions of interest. The controller is programmable to combine a signal from the regions of interest into a 3D data.
    Type: Application
    Filed: June 29, 2010
    Publication date: October 21, 2010
    Applicants: The Jackson Laboratory, University of Maine
    Inventors: Joerg Bewersdorf, Manuel F. Juette, Travis Gould, Sam T. Hess
  • Patent number: 7772569
    Abstract: A microscopy system is configured for creating 3D images from individually localized probe molecules. The microscopy system includes a sample stage, an activation light source, a readout light source, a beam splitting device, at least one camera, and a controller. The activation light source activates probes of at least one probe subset of photo-sensitive luminescent probes, and the readout light source causes luminescence light from the activated probes. The beam splitting device splits the luminescence light into at least two paths to create at least two detection planes that correspond to the same or different number of object planes of the sample. The camera detects simultaneously the at least two detection planes, the number of object planes being represented in the camera by the same number of recorded regions of interest. The controller is programmable to combine a signal from the regions of interest into a 3D data.
    Type: Grant
    Filed: April 1, 2008
    Date of Patent: August 10, 2010
    Assignees: The Jackson Laboratory, University of Maine
    Inventors: Joerg Bewersdorf, Manuel F. Juette, Travis Gould, Sam T. Hess
  • Publication number: 20090242798
    Abstract: A microscopy system is configured for creating 3D images from individually localized probe molecules. The microscopy system includes a sample stage, an activation light source, a readout light source, a beam splitting device, at least one camera, and a controller. The activation light source activates probes of at least one probe subset of photo-sensitive luminescent probes, and the readout light source causes luminescence light from the activated probes. The beam splitting device splits the luminescence light into at least two paths to create at least two detection planes that correspond to the same or different number of object planes of the sample. The camera detects simultaneously the at least two detection planes, the number of object planes being represented in the camera by the same number of recorded regions of interest. The controller is programmable to combine a signal from the regions of interest into a 3D data.
    Type: Application
    Filed: April 1, 2008
    Publication date: October 1, 2009
    Applicants: The Jackson Laboratory, University of Maine
    Inventors: Joerg Bewersdorf, Manuel F. Juette, Travis Gould, Sam T. Hess