Patents by Inventor Sameer Pradhan

Sameer Pradhan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8877619
    Abstract: Structures and processes are provided that can be used for effectively integrating different transistor designs across a process platform. In particular, a bifurcated process is provided in which dopants and other processes for forming some transistor types may be performed prior to STI or other device isolation processes, and other devices may be formed thereafter. Thus, doping and other steps and their sequence with respect to the STI process can be selected to be STI-first or STI-last, depending on the device type to be manufactured, the range of device types that are manufactured on the same wafer or die, or the range of device types that are planned to be manufactured using the same or similar mask sets.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: November 4, 2014
    Assignee: SuVolta, Inc.
    Inventors: Scott E. Thompson, Lucian Shifren, Pushkar Ranade, Lance Scudder, Dalong Zhao, Teymur Bakhisher, Sameer Pradhan
  • Publication number: 20140117425
    Abstract: The present description relates the formation of a first level interlayer dielectric material layer within a non-planar transistor, which may be formed by a spin-on coating technique followed by oxidation and annealing. The first level interlayer dielectric material layer may be substantially void free and may exert a tensile strain on the source/drain regions of the non-planar transistor.
    Type: Application
    Filed: December 6, 2011
    Publication date: May 1, 2014
    Inventors: Sameer Pradhan, Jeanne Luce
  • Publication number: 20140103406
    Abstract: A semiconductor structure is formed with a NFET device and a PFET device. The NFET device is formed by masking the PFET device regions of a substrate, forming a screen layer through epitaxial growth and in-situ doping, and forming an undoped channel layer on the screen layer through epitaxial growth. The PFET device is similarly formed by masking the NFET regions of a substrate, forming a screen layer through epitaxial growth and in-situ doping, and forming an undoped channel layer on the screen layer through epitaxial growth. An isolation region is formed between the NFET and the PFET device areas to remove any facets occurring during the separate epitaxial growth phases. By forming the screen layer through in-situ doped epitaxial growth, a reduction in junction leakage is achieved versus forming the screen layer using ion implantation.
    Type: Application
    Filed: December 19, 2013
    Publication date: April 17, 2014
    Inventors: Lingquan Wang, Teymur Bakhishev, Dalong Zhao, Pushkar Ranade, Sameer Pradhan, Thomas Hoffmann, Lucian Shifren, Lance Scudder
  • Publication number: 20140084385
    Abstract: A semiconductor transistor structure fabricated on a silicon substrate effective to set a threshold voltage, control short channel effects, and control against excessive junction leakage may include a transistor gate having a source and drain structure. A highly doped screening region lies is embedded a vertical distance down from the surface of the substrate. The highly doped screening region is separated from the surface of the substrate by way of a substantially undoped channel layer which may be epitaxially formed. The source/drain structure may include a source/drain extension region which may be raised above the surface of the substrate. The screening region is preferably positioned to be located at or just below the interface between the source/drain region and source/drain extension portion. The transistor gate may be formed below a surface level of the silicon substrate and either above or below the heavily doped portion of the source/drain structure.
    Type: Application
    Filed: September 5, 2013
    Publication date: March 27, 2014
    Applicant: SuVolta, Inc.
    Inventors: Thomas Hoffmann, Lucian Shifren, Scott E. Thompson, Pushkar Ranade, Jing Wang, Paul E. Gregory, Sachin R. Sonkusale, Lance Scudder, Dalong Zhao, Teymur Bakhishev, Yujie Liu, Lingquan Wang, Weimin Zhang, Sameer Pradhan, Michael Duane, Sung Hwan Kim
  • Patent number: 8637955
    Abstract: A semiconductor structure is formed with a NFET device and a PFET device. The NFET device is formed by masking the PFET device regions of a substrate, forming a screen layer through epitaxial growth and in-situ doping, and forming an undoped channel layer on the screen layer through epitaxial growth. The PFET device is similarly formed by masking the NFET regions of a substrate, forming a screen layer through epitaxial growth and in-situ doping, and forming an undoped channel layer on the screen layer through epitaxial growth. An isolation region is formed between the NFET and the PFET device areas to remove any facets occurring during the separate epitaxial growth phases. By forming the screen layer through in-situ doped epitaxial growth, a reduction in junction leakage is achieved versus forming the screen layer using ion, implantation.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: January 28, 2014
    Assignee: SuVolta, Inc.
    Inventors: Lingquan Wang, Teymur Bakhishev, Dalong Zhao, Pushkar Ranade, Sameer Pradhan, Thomas Hoffmann, Lucian Shifren, Lance Scudder
  • Patent number: 8114169
    Abstract: Disclosed herein are novel compositions for biobleaching coupled with stone washing of indigo dyed denims comprising a blend of glucose oxidase, catalases and cellulases in the ratio of 1.0:10.0:1.0 along with sugar base, peroxide source and optional adjuvants and a process for the said biobleaching coupled with stone washing wherein the process is carried out at optimized conditions of neutral pH (6.5-7.0) and a temperature of 55° C. Processing time may vary from 15 minutes to 90 minutes depending on the extent of bleach required for the fabric.
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: February 14, 2012
    Assignee: Advanced Enzyme Technologies Limited
    Inventors: Chandrakant Laxminarayan Rathi, Saylee Sameer Pradhan
  • Publication number: 20100266232
    Abstract: A silicon electro-optic waveguide modulator is formed using a metal-oxide-semiconductor (MOS) configuration. Various embodiments are described using different modes of operation of the MOS diode and gate oxide thicknesses. In one example, a high-speed submicron waveguide active device is formed using silicon-on-insulator. A micro-ring resonator intensity-modulator exhibits switching times on the order of tens of pS with modulation depth of 73% with a bias voltage of 5 volts.
    Type: Application
    Filed: July 6, 2010
    Publication date: October 21, 2010
    Applicant: Cornell Research Foundation, Inc.
    Inventors: Michal Lipson, Bradley Schmidt, Sameer Pradhan, Qianfan Xu
  • Patent number: 7751654
    Abstract: A silicon electro-optic waveguide modulator is formed using a metal-oxide-semiconductor (MOS) configuration. Various embodiments are described using different modes of operation of the MOS diode and gate oxide thicknesses. In one example, a high-speed submicron waveguide active device is formed using silicon-on-insulator. A micro-ring resonator intensity-modulator exhibits switching times on the order of tens of pS with modulation depth of 73% with a bias voltage of 5 volts.
    Type: Grant
    Filed: March 3, 2006
    Date of Patent: July 6, 2010
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Michal Lipson, Bradley Schmidt, Sameer Pradhan, Qianfan Xu
  • Publication number: 20100040755
    Abstract: A Whole egg replacing novel premix concentrate specially designed for cake and cake related products wherein the said premix comprises isolates of protein from gramineae family—10-30% with isolates of milk based protein ranging from 20-40% and in conjunction with the emulsifier ranging from 5-15%, leavening system ranging from 1-10%, stabilizers such as calcium, sodium, potassium salts at about 7-10% with filler as starch and starch hydrolyzates.
    Type: Application
    Filed: February 15, 2008
    Publication date: February 18, 2010
    Inventors: Chandrakant Laxminarayan Rathi, Saylee Sameer Pradhan, Ahila Sriram, Manoj Nair
  • Publication number: 20100011510
    Abstract: Disclosed herein are novel compositions for biobleaching coupled with stone washing of indigo dyed denims comprising a blend of glucose oxidase, catalases and cellulases in the ratio of 1.0:10.0:1.0 along with sugar base, peroxide source and optional adjuvants and a process for the said biobleaching coupled with stone washing wherein the process is carried out at optimized conditions of neutral pH (6.5-7.0) and a temperature of 55° C. Processing time may vary from 15 minutes to 90 minutes depending on the extent of bleach required for the fabric.
    Type: Application
    Filed: May 8, 2007
    Publication date: January 21, 2010
    Applicant: Advanced Enzyme Technologies Limited
    Inventors: Chandrakant Laxminarayan Rathi, Saylee Sameer Pradhan
  • Publication number: 20060215949
    Abstract: A silicon electro-optic waveguide modulator is formed using a metal-oxide-semiconductor (MOS) configuration. Various embodiments are described using different modes of operation of the MOS diode and gate oxide thicknesses. In one example, a high-speed submicron waveguide active device is formed using silicon-on-insulator. A micro-ring resonator intensity-modulator exhibits switching times on the order of tens of pS with modulation depth of 73% with a bias voltage of 5 volts.
    Type: Application
    Filed: March 3, 2006
    Publication date: September 28, 2006
    Inventors: Michal Lipson, Bradley Schmidt, Sameer Pradhan, Qianfan Xu