Patents by Inventor Samo Lasic

Samo Lasic has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160356873
    Abstract: According to an aspect of the present inventive concept there is provided a method for quantifying isotropic diffusion and/or anisotropic diffusion in a sample, the method comprising: performing diffusion weighted magnetic resonance measurements on the sample using diffusion encoding magnetic gradient pulse sequences Gi=1 . . . m, wherein each magnetic gradient pulse sequence Gi is generated such that a diffusion encoding tensor bi for the magnetic gradient pulse sequence Gi has one to three non-zero eigenvalues, where bi=Formula (I), qi(t) is proportional to Formula (II) and t is an echo time.
    Type: Application
    Filed: February 10, 2015
    Publication date: December 8, 2016
    Applicant: CR Development AB
    Inventors: Daniel Topgaard, Samo Lasic, Markus Nilsson
  • Publication number: 20160187448
    Abstract: The present invention describes a method for quantifying microscopic diffusion anisotropy and/or mean diffusivity in a material by analysis of echo attenuation curves acquired with two different gradient modulations schemes, wherein one gradient modulation scheme is based on isotropic diffusion weighting and the other gradient modulation scheme is based on non-isotropic diffusion weighting, and wherein the method comprises analyzing by comparing the signal decays of the two acquired echo attenuation curves.
    Type: Application
    Filed: March 8, 2016
    Publication date: June 30, 2016
    Inventors: Daniel TOPGAARD, Samo LASIC, Markus NILSSON
  • Publication number: 20150168527
    Abstract: The present invention discloses a method for magnetic resonance (MR) imaging comprising: acquiring at least two MR images with different motion-weighting originating from a RF and gradient pulse sequence causing signal attenuation from diffusion but not flow (flow-compensated data); acquiring at least two MR images with different motion-weighting originating from a RF and gradient pulse sequence causing signal attenuation from diffusion and flow (non-compensated data); performing a model fit to the flow-compensated and non-compensated data in which at least one of the adjustable parameters are constrained to be the same for both sets of data; and obtaining quantitative information on microscopic flow by extracting at least one parameter of the intravoxel incoherent motion (IVIM) effect from the model fit, said method being directed to diffusion-perfusion.
    Type: Application
    Filed: June 24, 2013
    Publication date: June 18, 2015
    Applicant: CR DEVELOPMENT AB
    Inventors: Daniel Topgaard, Samo Lasic
  • Publication number: 20150130458
    Abstract: The present invention describes a method for quantifying microscopic diffusion anisotropy and/or mean diffusivity in a material by analysis of echo attenuation curves acquired with two different gradient modulations schemes, wherein one gradient modulation scheme is based on isotropic diffusion weighting and the other gradient modulation scheme is based on non-isotropic diffusion weighting, and wherein the method comprises analyzing by comparing the signal decays of the two acquired echo attenuation curves.
    Type: Application
    Filed: May 3, 2013
    Publication date: May 14, 2015
    Inventors: Daniel Topgaard, Samo Lasic, Markus Nilsson
  • Publication number: 20150115957
    Abstract: The present invention describes a method for magnetic resonance (MR) and/or MR imaging, comprising acquisition of signals and MR images originating from a RF and gradient sequence causing isotropic diffusion weighting of signal attenuation, wherein the isotropic diffusion weighting is achieved by one time-dependent dephasing vector q(t) having an orientation, wherein the isotropic diffusion weighting is proportional to the trace of a diffusion tensor D, and wherein the orientation of the time-dependent dephasing vector q(t) is either varied discretely in more than three directions in total, or changed continuously, or changed in a combination of discretely and continuously during the gradient pulse sequence, 0?t?echo time, where t represents the time. The method may be performed during a single shot (single MR excitation).
    Type: Application
    Filed: May 3, 2013
    Publication date: April 30, 2015
    Inventors: Daniel Topgaard, Samo Lasic, Markus Nilsson