Patents by Inventor Samson F. Creasey

Samson F. Creasey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11951633
    Abstract: Systems and methods for determining a location of a robot are provided. A method includes receiving, by a processor, a signal from a deformable sensor including data with respect to a deformation region in a deformable membrane of the deformable sensor resulting from contact with a first object. The data associated with contact with the first object is compared, by the processor, to details associated with contact with the first object to information associated with a plurality of objects stored in a database. The first object is identified, by the processor, as a first identified object of the plurality of objects stored in the database. The first identified object is an object of the plurality of objects stored in the database that is most similar to the first object. The location of the robot is determined, by the processor, based on a location of the first identified object.
    Type: Grant
    Filed: January 10, 2023
    Date of Patent: April 9, 2024
    Assignees: Toyota Research Institute, Inc., Toyota Jidosha Kabushiki Kaisha
    Inventors: Alexander Alspach, Naveen Suresh Kuppuswamy, Avinash Uttamchandani, Samson F. Creasey, Russell L Tedrake, Kunimatsu Hashimoto, Erik C. Sobel, Takuya Ikeda
  • Patent number: 11806864
    Abstract: A robot arm assembly for detecting a pose and force associated with an object is provided. The robot arm assembly includes an end effector having a plurality of fingers, and a deformable sensor provided on each finger. The deformable sensor includes a housing, a deformable membrane coupled to the housing, an enclosure filled with a medium, and an internal sensor disposed within the housing having a field of view directed through the medium and toward an internal surface of the deformable membrane. A processor is configured to receive an output from each internal sensor, the output including a contact region of the deformable membrane as a result of contact with the object. The processor determines an amount of displacement of the contact region based on the output from each internal sensor, and determines the pose and the force associated with the object based on the amount of displacement.
    Type: Grant
    Filed: January 18, 2023
    Date of Patent: November 7, 2023
    Assignees: TOYOTA RESEARCH INSTITUTE, INC., TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Alexander Alspach, Naveen Suresh Kuppuswamy, Avinash Uttamchandani, Samson F. Creasey, Russell L. Tedrake, Kunimatsu Hashimoto, Erik C. Sobel, Takuya Ikeda
  • Publication number: 20230158674
    Abstract: Systems and methods for determining a location of a robot are provided. A method includes receiving, by a processor, a signal from a deformable sensor including data with respect to a deformation region in a deformable membrane of the deformable sensor resulting from contact with a first object. The data associated with contact with the first object is compared, by the processor, to details associated with contact with the first object to information associated with a plurality of objects stored in a database. The first object is identified, by the processor, as a first identified object of the plurality of objects stored in the database. The first identified object is an object of the plurality of objects stored in the database that is most similar to the first object. The location of the robot is determined, by the processor, based on a location of the first identified object.
    Type: Application
    Filed: January 10, 2023
    Publication date: May 25, 2023
    Applicants: Toyota Research Institute, Inc., TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Alexander Alspach, Naveen Suresh Kuppuswamy, Avinash Uttamchandani, Samson F. Creasey, Russell L. Tedrake, Kunimatsu Hashimoto, Erik C. Sobel, Takuya Ikeda
  • Publication number: 20230150148
    Abstract: A robot arm assembly for detecting a pose and force associated with an object is provided. The robot arm assembly includes an end effector having a plurality of fingers, and a deformable sensor provided on each finger. The deformable sensor includes a housing, a deformable membrane coupled to the housing, an enclosure filled with a medium, and an internal sensor disposed within the housing having a field of view directed through the medium and toward an internal surface of the deformable membrane. A processor is configured to receive an output from each internal sensor, the output including a contact region of the deformable membrane as a result of contact with the object. The processor determines an amount of displacement of the contact region based on the output from each internal sensor, and determines the pose and the force associated with the object based on the amount of displacement.
    Type: Application
    Filed: January 18, 2023
    Publication date: May 18, 2023
    Applicants: Toyota Research Institute, Inc., TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Alexander Alspach, Naveen Suresh Kuppuswamy, Avinash Uttamchandani, Samson F. Creasey, Russell L. Tedrake, Kunimatsu Hashimoto, Erik C. Sobel, Takuya Ikeda
  • Patent number: 11584026
    Abstract: A robot arm assembly for detecting a pose and force associated with an object is provided. The robot arm assembly includes an end effector having a plurality of fingers, and a deformable sensor provided on each finger. The deformable sensor includes a housing, a deformable membrane coupled to the housing, an enclosure filled with a medium, and an internal sensor disposed within the housing having a field of view directed through the medium and toward an internal surface of the deformable membrane. A processor is configured to receive an output from each internal sensor, the output including a contact region of the deformable membrane as a result of contact with the object. The processor determines an amount of displacement of the contact region based on the output from each internal sensor, and determines the pose and the force associated with the object based on the amount of displacement.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: February 21, 2023
    Assignees: Toyota Research Institute, Inc., Toyota Jidosha Kabushiki Kaisha
    Inventors: Alexander Alspach, Naveen Suresh Kuppuswamy, Avinash Uttamchandani, Samson F. Creasey, Russell L. Tedrake, Kunimatsu Hashimoto, Erik C. Sobel, Takuya Ikeda
  • Patent number: 11577395
    Abstract: Systems and methods for determining a location of a robot are provided. A method includes receiving, by a processor, a signal from a deformable sensor including data with respect to a deformation region in a deformable membrane of the deformable sensor resulting from contact with a first object. The data associated with contact with the first object is compared, by the processor, to details associated with contact with the first object to information associated with a plurality of objects stored in a database. The first object is identified, by the processor, as a first identified object of the plurality of objects stored in the database. The first identified object is an object of the plurality of objects stored in the database that is most similar to the first object. The location of the robot is determined, by the processor, based on a location of the first identified object.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: February 14, 2023
    Assignees: Toyota Research Institute, Inc., Toyota Jidosha Kabushiki Kaisha
    Inventors: Alexander Alspach, Naveen Suresh Kuppuswamy, Avinash Uttamchandani, Samson F. Creasey, Russell L. Tedrake, Kunimatsu Hashimoto, Erik C. Sobel, Takuya Ikeda
  • Publication number: 20210252709
    Abstract: Systems and methods for determining a location of a robot are provided. A method includes receiving, by a processor, a signal from a deformable sensor including data with respect to a deformation region in a deformable membrane of the deformable sensor resulting from contact with a first object. The data associated with contact with the first object is compared, by the processor, to details associated with contact with the first object to information associated with a plurality of objects stored in a database. The first object is identified, by the processor, as a first identified object of the plurality of objects stored in the database. The first identified object is an object of the plurality of objects stored in the database that is most similar to the first object. The location of the robot is determined, by the processor, based on a location of the first identified object.
    Type: Application
    Filed: July 17, 2020
    Publication date: August 19, 2021
    Applicants: Toyota Research Institute, Inc., TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Alexander Alspach, Naveen Suresh Kuppuswamy, Avinash Uttamchandani, Samson F. Creasey, Russell L. Tedrake, Kunimatsu Hashimoto, Erik C. Sobel, Takuya Ikeda
  • Publication number: 20210252721
    Abstract: A robot arm assembly for detecting a pose and force associated with an object is provided. The robot arm assembly includes an end effector having a plurality of fingers, and a deformable sensor provided on each finger. The deformable sensor includes a housing, a deformable membrane coupled to the housing, an enclosure filled with a medium, and an internal sensor disposed within the housing having a field of view directed through the medium and toward an internal surface of the deformable membrane. A processor is configured to receive an output from each internal sensor, the output including a contact region of the deformable membrane as a result of contact with the object. The processor determines an amount of displacement of the contact region based on the output from each internal sensor, and determines the pose and the force associated with the object based on the amount of displacement.
    Type: Application
    Filed: June 23, 2020
    Publication date: August 19, 2021
    Applicants: Toyota Research Institute, Inc., TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Alexander Alspach, Naveen Suresh Kuppuswamy, Avinash Uttamchandani, Samson F. Creasey, Russell L. Tedrake, Kunimatsu Hashimoto, Erik C. Sobel, Takuya Ikeda
  • Patent number: 9052714
    Abstract: A computer-implemented method and system for controlling operation of an autonomous driverless vehicle in response to detection of a hazard in the path of the vehicle.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: June 9, 2015
    Assignee: Jaybridge Robotics, Inc.
    Inventors: Samson F. Creasey, Oliver P. Hinds
  • Publication number: 20150019043
    Abstract: A computer-implemented method and system for controlling operation of an autonomous driverless vehicle in response to detection of a hazard in the path of the vehicle.
    Type: Application
    Filed: July 12, 2013
    Publication date: January 15, 2015
    Applicant: JAYBRIDGE ROBOTICS, INC.
    Inventors: Samson F. Creasey, Oliver P. Hinds
  • Publication number: 20020059371
    Abstract: A client machine connects directly to a proxy server without the knowledge or without a programmed expectation that the proxy server will connect to another server at all. The client machine sends a request directly to the proxy server, expecting that the content requested by the client machine resides on the proxy server. The proxy server, if it does not contain the requested content, obtains the requested content from a second server without the client machine ever knowing that the content did not originally reside on the proxy server, and was instead obtained from the second server.
    Type: Application
    Filed: October 5, 2001
    Publication date: May 16, 2002
    Inventors: John M. Jamail, Samson F. Creasey