Patents by Inventor Samu Taulu

Samu Taulu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230218218
    Abstract: Disclosed is a magnetoencephalography apparatus (100) and a method. The apparatus comprises a plurality of magnetic sensors, one or more processors and one or more memories. The method comprises obtaining a reference data, calculating from the reference data a reference basis, obtaining a source basis, obtain a source data, adding together the source basis and the reference basis to form a joint basis and determine an estimate for the magnetic brain activity of the source by parametrizing the source data in the joint basis.
    Type: Application
    Filed: June 23, 2021
    Publication date: July 13, 2023
    Inventors: Jukka Nenonen, Matti Kajola, Samu Taulu
  • Patent number: 11540778
    Abstract: A method for suppressing sensor noise in a spatially oversampled sensor array includes receiving spatially oversampled multi-channel sensor data from a region of interest and building a spatial model from the data for essential spatial degrees of freedom. The method further includes decomposing the data into the underlying spatial model to obtain associated amplitude components containing a mixture of original temporal waveforms of the data and, for each channel of the multi-channel sensor, estimating time-domain amplitude components using cross-validation. Next, for each channel, based on the estimated time-domain amplitude components, sensor noise and/or artifacts for that channel are identified. Finally, for each channel, the identified sensor noise and/or artifacts can be suppressed from the data.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: January 3, 2023
    Assignee: University of Washington
    Inventors: Samu Taulu, Eric D. Larson
  • Publication number: 20210186400
    Abstract: Embodiments disclosed herein directed to systems, apparatuses, and methods for the suppression of artifacts in non-invasive electromagnetic recordings. A data set, such as an electroencephalography (EEG) or magnetoencephalography (MEG) data set may be recorded by a number of sensors. The data set may include contributions from a signal of interest and from artifacts. The contribution of artifacts may be suppressed by splitting the data set into projected data and residual data based on a spatial model of the signal of interest. The projected data may contain contributions from the signal of interest and artifacts, while the residual data may primarily contain contributions from artifacts. The projected and residual data may be compared to remove or reduce the contribution of artifacts from the projected data.
    Type: Application
    Filed: August 22, 2019
    Publication date: June 24, 2021
    Applicant: University of Washington
    Inventors: Samu Taulu, Eric Larson
  • Patent number: 10307105
    Abstract: The present invention introduces a method, device and a computer program for removing artifacts present in individual channels of a multichannel measurement device. At first, a basis is generated defining an n-dimensional subspace of the N-dimensional signal space, where n is smaller than N, where using in the definition of the n-dimensional basis a physical model of a Signal Space Separation method, or a statistical model based on the statistics of recorded N-dimensional signals. Thereafter, a combined (n+m)-dimensional basis is formed by adding m signal vectors to the n-dimensional basis, each of these m signal vectors representing a signal present only in a single channel of the N-channel device. After this the recorded N-dimensional signal vector is decomposed into n+m components in the combined basis, and finally, components corresponding to the m added vectors in the combined basis are subtracted from the recorded N-dimensional signal vector.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: June 4, 2019
    Assignee: Elekta AB
    Inventors: Samu Taulu, Matti Kajola, Juha Simola
  • Publication number: 20190125268
    Abstract: A method for suppressing sensor noise in a spatially oversampled sensor array includes receiving spatially oversampled multi-channel sensor data from a region of interest and building a spatial model from the data for essential spatial degrees of freedom. The method further includes decomposing the data into the underlying spatial model to obtain associated amplitude components containing a mixture of original temporal waveforms of the data and, for each channel of the multi-channel sensor, estimating time-domain amplitude components using cross-validation. Next, for each channel, based on the estimated time-domain amplitude components, sensor noise and/or artifacts for that channel are identified. Finally, for each channel, the identified sensor noise and/or artifacts can be suppressed from the data.
    Type: Application
    Filed: May 26, 2017
    Publication date: May 2, 2019
    Inventors: Samu Taulu, Eric D. Larson
  • Patent number: 9977764
    Abstract: The present invention introduces a method, apparatus and computer program for magnetic resonance imaging or magnetoencephalography applications in order to control currents of a coil assembly (20), and thus achieving desired magnetic fields precisely in the measuring volume (21). The approach is an algebraic method where a field vector is generated for the test currents of each coil (20). Vector and matrix algebra is applied and a linear set of equations is formed. Field components and their derivatives up to the desired order can be taken into account. Principal component analysis or independent component analysis can be applied for determination of the dominant external interference components. By checking the condition value for the matrix (33, 45), it is possible to investigate whether a reasonable solution of currents for desired magnetic fields is possible to achieve. Finally, solved currents can be installed into a current supply unit (29) feeding the coils of the assembly (20).
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: May 22, 2018
    Assignee: Elekta AB (publ).
    Inventors: Juha Simola, Samu Taulu
  • Patent number: 9642554
    Abstract: The present invention introduces a method for adjusting interference signal estimates provided by multichannel biomagnetic field measurements. A so-called Signal Space Separation method (SSS) is applied in the calculatory analysis of the measurement signals, providing for the division of the sources causing the fields in objects of interest and external interferences. When the signal basis representing the interferences has been estimated, this interference signal estimate is adjusted by measuring the fields without the object to be measured and without changing the sensor assembly. Interference components obtained in this manner are analyzed in such a way as to include only the most significant interference components. An adjusted interference subspace is formed, by means of which signal processing and the analysis of the useful signals can be continued.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: May 9, 2017
    Assignee: Elekta AB (publ)
    Inventors: Juha Simola, Samu Taulu
  • Publication number: 20140343882
    Abstract: The present invention introduces a method, device and a computer program for removing artifacts present in individual channels of a multichannel measurement device. At first, a basis is generated defining an n-dimensional subspace of the N-dimensional signal space, where n is smaller than N, where using in the definition of the n-dimensional basis a physical model of a Signal Space Separation method, or a statistical model based on the statistics of recorded N-dimensional signals. Thereafter, a combined (n+m)-dimensional basis is formed by adding m signal vectors to the n-dimensional basis, each of these m signal vectors representing a signal present only in a single channel of the N-channel device. After this the recorded N-dimensional signal vector is decomposed into n+m components in the combined basis, and finally, components corresponding to the m added vectors in the combined basis are subtracted from the recorded N-dimensional signal vector.
    Type: Application
    Filed: January 24, 2013
    Publication date: November 20, 2014
    Inventors: Samu Taulu, Matti Kajola, Juha Simola
  • Patent number: 8838225
    Abstract: The present invention introduces a method for processing multichannel measurement data achieved especially in MEG and EEG measurements. The method uses a signal space separation (SSS) method and the orthogonality of lead fields in order to calculate linear transformation from physical measurement channels to virtual channels. The geometry related to the measurement arrangement is dissipated and the number of virtual channels is clearly lower than the number of physical sensors. The concept of total information can be applied for such transformed measurement data due to orthogonality. The method offers simplified post-processing of the biomagnetic data, such as for source modelling. The total information can also be interpreted as a robust quantity describing the physiological state of a patient.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: September 16, 2014
    Assignee: Elekta AB (publ)
    Inventors: Antti Ahonen, Matti Kajola, Jukka Nenonen, Juha Simola, Samu Taulu
  • Publication number: 20130197838
    Abstract: The present invention introduces a method, apparatus and computer program for magnetic resonance imaging or magnetoencephalography applications in order to control currents of a coil assembly (20), and thus achieving desired magnetic fields precisely in the measuring volume (21). The approach is an algebraic method where a field vector is generated for the test currents of each coil (20). Vector and matrix algebra is applied and a linear set of equations is formed. Field components and their derivatives up to the desired order can be taken into account. Principal component analysis or independent component analysis can be applied for determination of the dominant external interference components. By checking the condition value for the matrix (33, 45), it is possible to investigate whether a reasonable solution of currents for desired magnetic fields is possible to achieve. Finally, solved currents can be installed into a current supply unit (29) feeding the coils of the assembly (20).
    Type: Application
    Filed: March 24, 2011
    Publication date: August 1, 2013
    Applicant: ELEKTA AB
    Inventors: Juha Simola, Samu Taulu
  • Publication number: 20130109954
    Abstract: The present invention introduces a method for adjusting interference signal estimates provided by multi-channel biomagnetic field measurements. A so-called Signal Space Separation method (SSS) is applied in the calculatory analysis of the measurement signals, providing for the division of the sources causing the fields in objects of interest and external interferences. When the signal basis representing the interferences has been estimated, this interference signal estimate is adjusted by measuring the fields without the object to be measured and without changing the sensor assembly. Interference components obtained in this manner are analyzed in such a way as to include only the most significant interference components. In addition, it is taken into account that only those forms of interference of the measured interference components are included which are not yet present in the calculated SSS model.
    Type: Application
    Filed: July 6, 2011
    Publication date: May 2, 2013
    Applicant: ELEKTA AB (PUBL).
    Inventors: Juha Simola, Samu Taulu
  • Patent number: 7933727
    Abstract: The present invention recognises and eliminates from a biomagnetic measurement signal interferences whose source is disposed in the direct vicinity of an object being measured. The invention utilises the SSS method that can be used to separate from one another the signals associated with the internal and external sources of a set of measurement sensors by calculating two series developments. The sources to be examined in the invention and disposed in the so-called intermediate space produce a component to both of the developments, and can, therefore, be detected by means of an analysis to be performed in a time domain. This division into components can be made using the Principal Component Analysis (PCA), the Independent Component Analysis (ICA) or the Singular Value Decomposition. Finally, the clarified interferences in the intermediate space can be eliminated from the measured signal using, for example, the linear algebraic orthogonal projection.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: April 26, 2011
    Assignee: Elekta AB (Publ)
    Inventors: Samu Taulu, Juha Simola
  • Patent number: 7649351
    Abstract: The present invention describes a method enabling one to shield a device that measures weak biomagnetic signals from strong magnetic interference fields. The measurement sensors are provided with a feedback compensation loop, the difference signal of which is obtained from the measurement sensors themselves. As the actuator of the feedback function, one or more coils are responsible for eliminating, the external interference fields in the region of the sensors. Difference signals can be generated as a linear combination from the signals of two or more sensors. In the control logic, the SSS method can be used to numerically separate the biomagnetic signal being measured from the signals produced by the sources—compensation coils and interference sources—disposed outside the measurement region. The interference suppression can be enhanced by placing the assembly of sensors and the actuators within a magnetically shielding room.
    Type: Grant
    Filed: February 11, 2005
    Date of Patent: January 19, 2010
    Assignee: Elekta AB (publ)
    Inventors: Matti Kajola, Lauri Parkkonen, Juha Simola, Samu Taulu
  • Publication number: 20090184709
    Abstract: The present invention describes a method enabling one to shield a device that measures weak biomagnetic signals from strong magnetic interference fields. The measurement sensors are provided with a feedback compensation loop, the difference signal of which is obtained from the measurement sensors themselves. As the actuator of the feedback function, one or more coils are responsible for eliminating, the external interference fields in the region of the sensors. Difference signals can be generated as a linear combination from the signals of two or more sensors. In the control logic, the SSS method can be used to numerically separate the biomagnetic signal being measured from the signals produced by the sources—compensation coils and interference sources—disposed outside the measurement region. The interference suppression can be enhanced by placing the assembly of sensors and the actuators within a magnetically shielding room.
    Type: Application
    Filed: February 11, 2005
    Publication date: July 23, 2009
    Applicant: Elekta AB (publ)
    Inventors: Matti Kajola, Lauri Parkkonen, Juha Simola, Samu Taulu
  • Publication number: 20090069661
    Abstract: The present invention relates to a novel manner of measuring DC fields using a multi-channel MEG or MKG measuring instrument; and on the other hand, to a manner of eliminating from the measurement result the interference signals caused by the DC currents. The invention combines the monitoring system of a testee's movement and the method for motion correction of the measured signals so that the signals produced by the DC currents of a moving testee's are visible in the final measurement result as a static signal component in a conventional MEG or MKG measurement. In that case, in the measurement, it is not necessary to beforehand prepare oneself for measuring the DC fields.
    Type: Application
    Filed: January 19, 2005
    Publication date: March 12, 2009
    Applicant: ELEKTA AB (publ)
    Inventors: Samu Taulu, Matti Kajola, Juha Simola
  • Patent number: 7502720
    Abstract: A method for interpreting the current distribution of an object being measured using basis vector components calculated from the measured signals. The components in question have been so selected that they describe the features, as independent as possible, of the current distribution being examined, which enhances the computation and makes it more accurate. This is achieved by converting the measured signals into a more natural form from the standpoint of the current distribution while totally eliminating the signals associated with the external interferences. After the conversion, the source modeling is performed in an optimal manner using the basis vector components of the signal space instead of the actual measurement signals. One substantial feature of the invention is that after the conversion, the source model need not be regularized any more.
    Type: Grant
    Filed: September 14, 2004
    Date of Patent: March 10, 2009
    Assignee: Elekta AB (publ)
    Inventor: Samu Taulu
  • Patent number: 7463024
    Abstract: A method and device by means of which an irrotational, sourceless vector field can be expressed by a number of physically reasonable basis vectors. In the method and device for processing a multi-channel measurement of magnetic fields of the present invention, measured signals can be unambiguously divided into signals of the irrotational, sourceless vector field that are caused by an interesting object or external interferences, as well as into a signal caused by the nonideality of the measuring device. The invention is based on the combining of two very fundamental mathematical regularities and applying in the processing of signal vectors of a multi-channel measuring device that measures an irrotational, sourceless vector field. The invention is based on the Maxwell's equations of an irrotational, sourceless vector field, as well as on the convergence characteristics of series developments.
    Type: Grant
    Filed: September 7, 2005
    Date of Patent: December 9, 2008
    Assignee: Elekta Neuromag Oy
    Inventors: Juha Simola, Matti Kajola, Samu Taulu
  • Publication number: 20080294386
    Abstract: The present invention recognises and eliminates from a biomagnetic measurement signal interferences whose source is disposed in the direct vicinity of an object being measured. The invention utilises the SSS method that can be used to separate from one another the signals associated with the internal and external sources of a set of measurement sensors by calculating two series developments. The sources to be examined in the invention and disposed in the so-called intermediate space produce a component to both of the developments, and can, therefore, be detected by means of an analysis to be performed in a time domain. This division into components can be made using the Principal Component Analysis (PCA), the Independent Component Analysis (ICA) or the Singular Value Decomposition. Finally, the clarified interferences in the intermediate space can be eliminated from the measured signal using, for example, the linear algebraic orthogonal projection.
    Type: Application
    Filed: April 21, 2006
    Publication date: November 27, 2008
    Applicant: ELEKTA AB (PUBL.)
    Inventors: Samu Taulu, Juha Simola
  • Publication number: 20080161714
    Abstract: The present invention introduces a method for processing multichannel measurement data achieved especially in MEG and EEG measurements. The method uses a signal space separation (SSS) method and the orthogonality of lead fields in order to calculate linear transformation from physical measurement channels to virtual channels. The geometry related to the measurement arrangement is dissipated and the number of virtual channels is clearly lower than the number of physical sensors. The concept of total information can be applied for such transformed measurement data due to orthogonality. The method offers simplified post-processing of the biomagnetic data, such as for source modelling. The total information can also be interpreted as a robust quantity describing the physiological state of a patient.
    Type: Application
    Filed: January 17, 2007
    Publication date: July 3, 2008
    Inventors: Antti Ahonen, Matti Kajola, Jukka Nenonen, Juha Simola, Samu Taulu
  • Publication number: 20070108962
    Abstract: A method for interpreting the current distribution of an object being measured using basis vector components calculated from the measured signals. The components in question have been so selected that they describe the features, as independent as possible, of the current distribution being examined, which enhances the computation and makes it more accurate. This is achieved by converting the measured signals into a more natural form from the standpoint of the current distribution while totally eliminating the signals associated with the external interferences. After the conversion, the source modeling is performed in an optimal manner using the basis vector components of the signal space instead of the actual measurement signals. One substantial feature of the invention is that after the conversion, the source model need not be regularized any more.
    Type: Application
    Filed: September 14, 2004
    Publication date: May 17, 2007
    Applicant: ELEKTA AB (PUB)
    Inventor: Samu Taulu