Patents by Inventor Samuel Flores-Torres

Samuel Flores-Torres has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10942161
    Abstract: Methods are provided for in-situ detection of varnish and/or deposit precursors in a lubricant in a lubricating environment. An electrostatic accumulator can be used within a lubricating environment to enhance accumulation of varnish and/or deposit precursors on portions of the electrostatic accumulator. The deposits accumulated on the electrostatic accumulator can then be characterized in-situ. The potential difference across portions of the electrostatic accumulator can cause an enhanced rate of deposit accumulation on the electrostatic accumulator, which can facilitate characterization of the tendency of a lubricant to accumulate deposits in the lubricating environment.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: March 9, 2021
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Walter D. Vann, Kathleen K. Cooper, Spyridon Korres, Samuel Flores-Torres, Bhaskar Prabhakar, Erik Herz
  • Publication number: 20200199475
    Abstract: This disclosure provides a method for improving wear control, while maintaining or improving energy efficiency, in a mechanical component having sliding or rolling between contacting surfaces. The method involves using a lubricant composition in the mechanical component having sliding or rolling between contacting surfaces. The lubricant composition has a base stock blend as a major component, and at least one lubricant additive, as a minor component. The base stock blend has at least one first base stock having a viscosity from 1 to 50 cSt at 40° C. and at least one second base stock having viscosity from 100 to 2000 cSt at 40° C. The first base stock is present in an amount greater than 50 to 95 wt % of the base stock blend, and the second base stock is present in an amount from 5 to less than 50 wt % of the base stock blend. The second base stock is miscible with the first base stock.
    Type: Application
    Filed: December 11, 2019
    Publication date: June 25, 2020
    Inventors: Samuel Flores-Torres, Michael L. Alessi, Gary Christensen, David G.L. Holt, Kathleen K. Cooper
  • Publication number: 20190136147
    Abstract: The present disclosure relates generally to lubricating compositions and methods of making and using the same. Specifically, the present disclosure relates to lubricating compositions and method of making and using the same for modifying friction at a metal-elastomer contact, and therefore improving at least one of elastomer lifetime, reducing elastomer wear, reducing metal wear, reducing energy consumption or a combination thereof. More specifically, one aspect of the present disclosure relates to lubricating compositions including at least two base oils with a viscosity difference between the first and second base oils; another aspect of the present disclosure relates to lubricating compositions comprising an additive that can modify friction at a metal-elastomer contact.
    Type: Application
    Filed: November 1, 2018
    Publication date: May 9, 2019
    Inventors: David G.L. HOLT, Spyridon KORRES, David A. RACKE, Samuel FLORES-TORRES, Tabassumul HAQUE, Candice I. PELLIGRA
  • Publication number: 20190086383
    Abstract: Methods are provided for in-situ detection of varnish and/or deposit precursors in a lubricant in a lubricating environment. An electrostatic accumulator can be used within a lubricating environment to enhance accumulation of varnish and/or deposit precursors on portions of the electrostatic accumulator. The deposits accumulated on the electrostatic accumulator can then be characterized in-situ. The potential difference across portions of the electrostatic accumulator can cause an enhanced rate of deposit accumulation on the electrostatic accumulator, which can facilitate characterization of the tendency of a lubricant to accumulate deposits in the lubricating environment.
    Type: Application
    Filed: September 6, 2018
    Publication date: March 21, 2019
    Inventors: Walter D. VANN, Kathleen K. COOPER, Spyridon KORRES, Samuel FLORES-TORRES, Bhaskar PRABHAKAR, Erik HERZ
  • Publication number: 20180100117
    Abstract: This disclosure relates to a lubricating oil for an electric vehicle powertrain and powertrain components. The lubricating oil has a composition including a lubricating base oil as a major component, an additive package, as a minor component, and an effective amount of one or more conductivity agents, as a minor component. The lubricating oil has an electrical conductivity from about 10 pS/m to about 20,000 pS/m, a dielectric constant of about 1.6 to about 3.6, with a ratio of electrical conductivity-to-dielectric constant from about 5 to about 10,000. This disclosure also relates to methods for producing a lubricating oil for an electric vehicle powertrain and powertrain components.
    Type: Application
    Filed: October 5, 2017
    Publication date: April 12, 2018
    Inventors: Samuel Flores-Torres, David G.L. Holt, James T. Carey
  • Publication number: 20180100114
    Abstract: Provided is a lubricating oil for electric and hybrid vehicles. The lubricating oil includes at least 80 wt % of a lubricating base oil, 0.5 to 5 wt % of one or more dispersants, 0 to 4 wt % of one or more neutral metal detergents, 0 to 1.5 wt % of zinc dialkyldithiophosphate, 0 to 0.2 wt % of molybdenum dialkyldithiocarbamate, 0 to 2 wt % of an active viscosity modifier, and 0.01 to 5 wt % of one or more other lubricating oil additives. The lubricating oil is essentially free of overbased metal detergents. The lubricating oil has an electrical conductivity from 50 to 3,000 pS/m and a kinematic viscosity from 2 to 20 cSt at 100° C. This disclosure also relates to methods for producing the lubricating oil, methods for lubricating electric and hybrid vehicles, and methods for controlling electrical conductivity of a lubricating oil by using conductivity promoters and conductivity inhibitors.
    Type: Application
    Filed: October 5, 2017
    Publication date: April 12, 2018
    Inventors: Zhisheng Gao, Luca Salvi, Samuel Flores-Torres
  • Publication number: 20180100118
    Abstract: This disclosure relates to a method for minimizing the electrical drainage of charged electrical powertrain components, a method for controlling electrical conductivity over a lifetime of a lubricating oil in an electric vehicle powertrain lubricated with the lubricating oil, and a method for obtaining a desired electrical conductivity-to-dielectric constant ratio of a lubricating oil for an electric vehicle powertrain and powertrain components. The methods relate to controlling at least one of oxidation, deposit formation and corrosion over the service lifetime of the oil. The lubricating oil has a composition including a lubricating base oil as a major component, an additive package, as a minor component, and an effective amount of one or more conductivity agents, as a minor component. The lubricating oil has an electrical conductivity from 10 pS/m to 20,000 pS/m, a dielectric constant of 1.6 to 3.6, with a ratio of electrical conductivity-to-dielectric constant from 5 to 10,000.
    Type: Application
    Filed: October 5, 2017
    Publication date: April 12, 2018
    Inventors: Samuel Flores-Torres, David G.L. Holt, James T. Carey
  • Publication number: 20180100115
    Abstract: Provided is a lubricating oil for electric and hybrid vehicles. The lubricating oil has a composition including at least 80 wt % of a lubricating base oil, from 0.8 to 5 wt % of one or more metal detergents, from 0 to 5 wt % of one or more dispersants, from 0 to 1.5 wt % of zinc dialkyldithiophosphate antiwear agent, from 0 to 0.2 wt % of a molybdenum dialkyldithiocarbamate, from 0 to 2 wt % of a viscosity modifier based on active ingredient, and from 0.01 to 5 wt % of other lubricating oil additives. The lubricating oil has an electrical conductivity from 3,000 to 20,000 pS/m, and kinematic viscosity from 2 to 20 cSt at 100° C. This disclosure also relates to methods for producing the lubricating oil, methods for lubricating electric and hybrid vehicles, and methods for controlling electrical conductivity of a lubricating oil by using conductivity promoters and conductivity inhibitors.
    Type: Application
    Filed: October 5, 2017
    Publication date: April 12, 2018
    Inventors: Zhisheng Gao, Luca Salvi, Samuel Flores-Torres
  • Publication number: 20180100120
    Abstract: This disclosure relates to a method for preventing or minimizing electrostatic discharge and dielectric breakdown in an electric vehicle powertrain by controlling electrical conductivity over a lifetime of a lubricating oil in an electric vehicle powertrain lubricated with the lubricating oil. The lubricating oil has a composition including a lubricating oil base stock as a major component, and an additive package as a minor component comprising one or more lubricating oil additives, and an effective amount of one or more conductivity agents, as a minor component. The lubricating oil has an electrical conductivity from 10 pS/m to 20,000 pS/m, a dielectric constant of 1.6 to 3.6, with a ratio of electrical conductivity-to-dielectric constant from 1,000 to 10,000.
    Type: Application
    Filed: October 5, 2017
    Publication date: April 12, 2018
    Inventors: Samuel Flores-Torres, David G.L. Holt, James T. Carey