Patents by Inventor Samuel James Bader

Samuel James Bader has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240021725
    Abstract: Gallium nitride (GaN) transistors with lateral depletion for integrated circuit technology are described. In an example, an integrated circuit structure includes a layer including gallium and nitrogen above a silicon substrate, a gate structure over the layer including gallium and nitrogen, a source region on a first side of the gate structure, a drain region on a second side of the gate structure, and a source field plate laterally between the gate structure and the drain region, the source field plate laterally separated from the gate structure.
    Type: Application
    Filed: December 24, 2022
    Publication date: January 18, 2024
    Inventors: Han Wui THEN, Marko RADOSAVLJEVIC, Samuel James BADER, Pratik KOIRALA, Michael S. BEUMER, Heli Chetanbhai VORA, Ahmad ZUBAIR
  • Patent number: 11710785
    Abstract: A High Electron Mobility Transistor (HEMT) device can include an AlN buffer layer on a substrate and an epi-GaN channel layer on the AlN buffer layer. An AlN barrier layer can be on the Epi-GaN channel layer to provide a channel region in the epi-GaN channel layer. A GaN drain region can be recessed into the epi-GaN channel layer at a first end of the channel region and a GaN source region can be recessed into the epi-GaN channel layer at a second end of the channel region opposite the first end of the channel region. A gate electrode can include a neck portion with a first width that extends a first distance above the AlN barrier layer between the GaN drain region and the GaN source region to a head portion of the gate electrode having a second width that is greater than the first width.
    Type: Grant
    Filed: June 4, 2020
    Date of Patent: July 25, 2023
    Assignee: Cornell University
    Inventors: Austin Hickman, Reet Chaudhuri, Samuel James Bader, Huili Grace Xing, Debdeep Jena
  • Publication number: 20230097805
    Abstract: Embodiments disclosed herein include transistor devices and methods of forming such devices. In an embodiment, a transistor device comprises a channel, where the channel comprises a first semiconductor material. In an embodiment, a source contact is at a first end of the channel, and a drain contact at a second end of the channel. In an embodiment, a gate electrode is between the source contact and the drain contact, and a field plate extends from the gate electrode towards the drain contact.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Samuel James BADER, Han Wui THEN
  • Publication number: 20230062922
    Abstract: Gallium nitride (GaN) selective epitaxial windows for integrated circuit technology is described. In an example, an integrated circuit structure includes a substrate including silicon, the substrate having a top surface. A first trench is in the substrate, the first trench having a first width and a first height. A second trench is in the substrate, the second trench having a second width and a second height. The second width is greater than the first width, and the second height is greater than the first height. A first island is in the first trench, the first island including gallium and nitrogen and having first corner facets at least partially below the top surface of the substrate. A second island is in the second trench, the second island including gallium and nitrogen and having second corner facets at least partially below the top surface of the substrate.
    Type: Application
    Filed: August 26, 2021
    Publication date: March 2, 2023
    Inventors: Samuel James BADER, Pratik KOIRALA, Nicole K. THOMAS, Han Wui THEN, Marko RADOSAVLJEVIC
  • Publication number: 20230069054
    Abstract: Gallium nitride (GaN) integrated circuit technology with multi-layer epitaxy and layer transfer is described. In an example, an integrated circuit structure includes a first channel structure including a plurality of alternating first channel layers and second channel layers, the first channel layers including gallium and nitrogen, and the second layers including gallium, aluminum and nitrogen. A second channel structure is bonded to the first channel structure. The second channel structure includes a plurality of alternating third channel layers and fourth channel layers, the third channel layers including gallium and nitrogen, and the fourth layers including gallium, aluminum and nitrogen.
    Type: Application
    Filed: August 24, 2021
    Publication date: March 2, 2023
    Inventors: Souvik GHOSH, Han Wui THEN, Pratik KOIRALA, Tushar TALUKDAR, Paul NORDEEN, Nityan NAIR, Marko RADOSAVLJEVIC, Ibrahim BAN, Kimin JUN, Jay GUPTA, Paul B. FISCHER, Nicole K. THOMAS, Thomas HOFF, Samuel James BADER
  • Publication number: 20230054719
    Abstract: Gallium nitride (GaN) layer transfer and regrowth for integrated circuit technology is described. In an example, an integrated circuit structure includes a substrate. An insulator layer is over the substrate. A device layer is directly on the insulator layer. The device layer has a thickness of less than approximately 500 nanometers.
    Type: Application
    Filed: August 20, 2021
    Publication date: February 23, 2023
    Inventors: Pratik KOIRALA, Souvik GHOSH, Paul NORDEEN, Tushar TALUKDAR, Thomas HOFF, Ibrahim BAN, Kimin JUN, Samuel James BADER, Marko RADOSAVLJEVIC, Nicole K. THOMAS, Paul B. FISCHER, Han Wui THEN
  • Publication number: 20230047449
    Abstract: Gallium nitride (GaN) integrated circuit technology is described. In an example, an integrated circuit structure includes a substrate including silicon, the substrate having a top surface. A first trench is in the substrate, the first trench having a first width. A second trench is in the substrate, the second trench having a second width less than the first width. A first island is in the first trench, the first island including gallium and nitrogen and having first corner facets below the top surface of the substrate. A second island is in the second trench, the second island including gallium and nitrogen and having second corner facets below the top surface of the substrate.
    Type: Application
    Filed: August 13, 2021
    Publication date: February 16, 2023
    Inventors: Nicole K. THOMAS, Samuel James BADER, Marko RADOSAVLJEVIC, Han Wui THEN, Pratik KOIRALA, Nityan NAIR
  • Patent number: 11522080
    Abstract: III-Nitride heterostructures with low p-type sheet resistance and III-Nitride heterostructure devices with gate recess and devices including the III-Nitride heterostructures are disclosed.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: December 6, 2022
    Assignee: Cornell University
    Inventors: Samuel James Bader, Reet Chaudhuri, Huili Grace Xing, Debdeep Jena
  • Patent number: 11158709
    Abstract: The long-missing polarization-induced two-dimensional hole gas is finally observed in undoped Group III nitride semiconductor structures and in undoped Group II or Group III oxide semiconductor structures. Experimental results providing unambiguous proof that a 2D hole gas in GaN grown on AlN does not need acceptor doping, and can be formed entirely by the difference in the internal polarization fields across the semiconductor heterojunction are presented.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: October 26, 2021
    Assignee: Cornell University
    Inventors: Reet Chaudhuri, Samuel James Bader, Jena Debdeep, Huili Grace Xing
  • Publication number: 20210249513
    Abstract: The long-missing polarization-induced two-dimensional hole gas is finally observed in undoped Group III nitride semiconductor structures and in undoped Group II or Group III oxide semiconductor structures. Experimental results providing unambiguous proof that a 2D hole gas in GaN grown on AlN does not need acceptor doping, and can be formed entirely by the difference in the internal polarization fields across the semiconductor heterojunction are presented.
    Type: Application
    Filed: July 19, 2019
    Publication date: August 12, 2021
    Applicant: Cornell University
    Inventors: Reet Chaudhuri, Samuel James Bader, Jena Debdeep, Huili Grace Xing
  • Publication number: 20200388701
    Abstract: A High Electron Mobility Transistor (HEMT) device can include an AlN buffer layer on a substrate and an epi-GaN channel layer on the AlN buffer layer. An AlN barrier layer can be on the Epi-GaN channel layer to provide a channel region in the epi-GaN channel layer. A GaN drain region can be recessed into the epi-GaN channel layer at a first end of the channel region and a GaN source region can be recessed into the epi-GaN channel layer at a second end of the channel region opposite the first end of the channel region. A gate electrode can include a neck portion with a first width that extends a first distance above the AlN barrier layer between the GaN drain region and the GaN source region to a head portion of the gate electrode having a second width that is greater than the first width.
    Type: Application
    Filed: June 4, 2020
    Publication date: December 10, 2020
    Inventors: Austin Hickman, Reet Chaudhuri, Samuel James Bader, Huili Grace Xing, Debdeep Jena
  • Publication number: 20200144407
    Abstract: III-Nitride heterostructures with low p-type sheet resistance and III-Nitride heterostructure devices with gate recess and devices including the III-Nitride heterostructures are disclosed.
    Type: Application
    Filed: November 6, 2019
    Publication date: May 7, 2020
    Applicant: Cornell University
    Inventors: Samuel James Bader, Reet Chaudhuri, Huili Grace Xing, Debdeep Jena