Patents by Inventor Samuel Kwok Wai Au

Samuel Kwok Wai Au has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170281287
    Abstract: A robotic medical system with a flexible guide tube such as a lung catheter can record the shape of the guide tube in a target configuration. If the shape includes a bend that is sharper than a sharpest permitted bend for insertion or removal of a tool such as a biopsy needle, a control system can find any locations of sharp bends and automatically retract the guide tube to a location associated with a sharp bend. With the tip backed up to that location, the needle can be inserted into or removed from the catheter. The control system can automatically move the catheter between the target configuration and the retracted configuration of the guide tube.
    Type: Application
    Filed: September 3, 2015
    Publication date: October 5, 2017
    Applicant: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventor: Samuel Kwok Wai Au
  • Publication number: 20170281288
    Abstract: A medical system including a flexible instrument such as a lung catheter or bronchoscope provides a control mode in which direct manual control of insertion can be used with computer-assisted control of instrument characteristics such as the orientation or rigidity of a portion of the instrument. To facilitate manual insertion control, a mechanism can provide low inertia and friction for movement along an insertion axis. One implementation employs a manual grip of the instrument for control of insertion pressure, a joystick or other input device for computer-assisted steering, and a foot pedal for control of stiffness or compliance in the instrument. Another implementation employs a joystick for computer-assisted steering and for control of stiffness or compliance in the instrument.
    Type: Application
    Filed: September 3, 2015
    Publication date: October 5, 2017
    Applicant: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventor: Samuel Kwok Wai AU
  • Patent number: 9743990
    Abstract: A medical instrument system includes a plurality of joints, a plurality of actuators, and a plurality of transmission systems. The transmission systems have proximal ends respectively coupled to the actuators. Each of the transmission systems have a distal end attached to an associated one of the joints to allow the transmission of a force for articulation of the medical instrument system. The system also includes a sensor coupled to measure a configuration of the medical instrument; and a control system coupled to receive configuration data, including a current configuration of a tip of the medical instrument from the sensor and a desired configuration of the tip of the medical instrument. Using the difference between the desired configuration and the current configuration of the tip of the medical instrument, the control system generates control signals for the actuators that cause the actuators to apply a set of tensions to the plurality of transmission systems.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: August 29, 2017
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Samuel Kwok Wai Au, Giuseppe Maria Prisco
  • Publication number: 20170143437
    Abstract: Methods, apparatus, and systems for operating a surgical system. In accordance with a method, a position of a surgical instrument is measured, the surgical instrument being included in a mechanical assembly having a plurality of joints and a first number of degrees of freedom, the position of the surgical instrument being measured for each of a second number of degrees of freedom of the surgical instrument. The method further includes estimating a position of each of the joints, where estimating the position of each joint includes applying the position measurements to at least one kinematic model of the mechanical assembly, the kinematic model having a third number of degrees of freedom greater than the first number of degrees of freedom. The method further includes controlling the mechanical assembly based on the estimated. position of the joints.
    Type: Application
    Filed: February 8, 2017
    Publication date: May 25, 2017
    Inventors: Samuel Kwok Wai Au, Raymond A. Bonneau, Nicola Diolaiti, Pushkar Hingwe, Arjang M. Hourtash, Amy E. Kerdok, Michael Turner
  • Patent number: 9585726
    Abstract: Methods, apparatus, and systems for operating a surgical system. In accordance with a method, a position of a surgical instrument is measured, the surgical instrument being included in a mechanical assembly having a plurality of joints and a first number of degrees of freedom, the position of the surgical instrument being measured for each of a second number of degrees of freedom of the surgical instrument. The method further includes estimating a position of each of the joints, where estimating the position of each joint includes applying the position measurements to at least one kinematic model of the mechanical assembly, the kinematic model having a third number of degrees of freedom greater than the first number of degrees of freedom. The method further includes controlling the mechanical assembly based on the estimated position of the joints.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: March 7, 2017
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Samuel Kwok Wai Au, Raymond A. Bonneau, Nicola Diolaiti, Pushkar Hingwe, Arjang M. Hourtash, Amy E. Kerdok, Michael Turner
  • Publication number: 20170000984
    Abstract: A medical system includes a catheter and a vision probe that can be removed from the catheter and replaced with a medical probe. The vision probe can thus be used to steer and pose the catheter, and then be removed and replaced with the medical probe when a medical task such as a lung biopsy is performed. A sensor system in the catheter at least partly measures a pose of the catheter, and control logic controls actuation of the catheter to maintain the desired working configuration when the medical probe is used. A small diameter catheter can thus provide vision and biopsy functionality.
    Type: Application
    Filed: September 6, 2016
    Publication date: January 5, 2017
    Inventors: Vincent DUINDAM, Catherine J. MOHR, Carolyn M. FENECH, Giuseppe Maria PRISCO, Samuel Kwok Wai AU, Caitlin Q. DONHOWE
  • Publication number: 20160213435
    Abstract: Methods, apparatus, and systems for controlling the movement of a mechanical body. In accordance with a method, desired movement information is received that identifies a desired motion of a mechanical body, the mechanical body having a first number of degrees of freedom. A plurality of instructions are then generated by applying the received desired movement information to a kinematic model, the kinematic model having a second number of degrees of freedom greater than the first number of degrees of freedom, each of the instructions being configured to control a corresponding one of the second number of degrees of freedom. A subset of the plurality of instructions are then transmitted for use in controlling the first number of degrees of freedom of the mechanical body.
    Type: Application
    Filed: January 21, 2016
    Publication date: July 28, 2016
    Inventors: Arjang M. Hourtash, Samuel Kwok Wai Au, Raymond A. Bonneau, Nicola Diolaiti, Pushkar Hingwe, Amy E. Kerdok, Michael Turner
  • Publication number: 20160206386
    Abstract: Methods, apparatus, and systems for operating a surgical system. In accordance with a method, a position of a surgical instrument is measured, the surgical instrument being included in a mechanical assembly having a plurality of joints and a first number of degrees of freedom, the position of the surgical instrument being measured for each of a second number of degrees of freedom of the surgical instrument. The method further includes estimating a position of each of the joints, where estimating the position of each joint includes applying the position measurements to at least one kinematic model of the mechanical assembly, the kinematic model having a third number of degrees of freedom greater than the first number of degrees of freedom. The method further includes controlling the mechanical assembly based on the estimated position of the joints.
    Type: Application
    Filed: January 15, 2016
    Publication date: July 21, 2016
    Inventors: Samuel Kwok Wai Au, Raymond A. Bonneau, Nicola Diolaiti, Pushkar Hingwe, Arjang M. Hourtash, Amy E. Kerdok, Michael Turner
  • Publication number: 20160175061
    Abstract: Methods, apparatus, and systems for performing minimally invasive surgery through an aperture of a patient. In accordance with a method, parameters are received from an input device associated with a surgeon, the parameters indicating a desired state of an end effector of a surgical instrument oriented through the aperture. The surgical instrument is included in a mechanical assembly having a first set of joints. Instructions are then computed for controlling the mechanical assembly using the received parameters by computing instructions for controlling a second set joints, the second set of joints including the first set of joints and an additional joint, the additional joint being absent from the mechanical assembly. The mechanical assembly is then driven so as to move the end effector toward the desired state based on the computed instructions.
    Type: Application
    Filed: February 29, 2016
    Publication date: June 23, 2016
    Inventors: Pushkar Hingwe, Samuel Kwok Wai Au, Raymond A. Bonneau, Nicola Diolaiti, Arjang M. Hourtash, Amy E. Kerdok, Michael Turner
  • Patent number: 9295525
    Abstract: Methods, apparatus, and systems for performing minimally invasive surgery through an aperture of a patient. In accordance with a method, parameters are received from an input device associated with a surgeon, the parameters indicating a desired state of an end effector of a surgical instrument oriented through the aperture. The surgical instrument is included in a mechanical assembly having a first set of joints. Instructions are then computed for controlling the mechanical assembly using the received parameters by computing instructions for controlling a second set joints, the second set of joints including the first set of joints and an additional joint, the additional joint being absent from the mechanical assembly. The mechanical assembly is then driven so as to move the end effector toward the desired state based on the computed instructions.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: March 29, 2016
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Pushkar Hingwe, Samuel Kwok Wai Au, Raymond A. Bonneau, Nicola Diolaiti, Arjang M. Hourtash, Amy E. Kerdok, Michael Turner
  • Patent number: 9272416
    Abstract: Methods, apparatus, and systems for controlling the movement of a mechanical body. In accordance with a method, desired movement information is received that identifies a desired motion of a mechanical body, the mechanical body having a first number of degrees of freedom. A plurality of instructions are then generated by applying the received desired movement information to a kinematic model, the kinematic model having a second number of degrees of freedom greater than the first number of degrees of freedom, each of the instructions being configured to control a corresponding one of the second number of degrees of freedom. A subset of the plurality of instructions are then transmitted for use in controlling the first number of degrees of freedom of the mechanical body.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: March 1, 2016
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Arjang M. Hourtash, Samuel Kwok Wai Au, Raymond A. Bonneau, Nicola Diolaiti, Pushkar Hingwe, Amy E. Kerdok, Michael Turner
  • Patent number: 9259280
    Abstract: Methods, apparatus, and systems for operating a surgical system. In accordance with a method, a position of a surgical instrument is measured, the surgical instrument being included in a mechanical assembly having a plurality of joints and a first number of degrees of freedom, the position of the surgical instrument being measured for each of a second number of degrees of freedom of the surgical instrument. The method further includes estimating a position of each of the joints, where estimating the position of each joint includes applying the position measurements to at least one kinematic model of the mechanical assembly, the kinematic model having a third number of degrees of freedom greater than the first number of degrees of freedom. The method further includes controlling the mechanical assembly based on the estimated position of the joints.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: February 16, 2016
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Samuel Kwok Wai Au, Raymond A. Bonneau, Nicola Diolaiti, Pushkar Hingwe, Arjang M. Hourtash, Amy E. Kerdok, Michael Turner
  • Publication number: 20150289942
    Abstract: Control systems and methods for a medical instrument use measurements to determine and control the tensions that actuators apply through instrument transmission systems. The use of tension and feedback allows control of a medical instrument having transmission systems that provide non-negligible compliance between joints and actuators even when the positions of joints cannot be directly related to actuator positions. One embodiment determines joint torques and tensions from differences between desired and measured joint positions. Another embodiment determines joint torques and tensions from differences between desired and measured positions of a tip of the instrument. Determination of tensions from joint torques can be performed using sequential evaluation of joints in an order from a distal end of the instrument toward a proximal end of the instrument.
    Type: Application
    Filed: June 26, 2015
    Publication date: October 15, 2015
    Inventors: Samuel Kwok Wai Au, Giuseppe Maria Prisco
  • Publication number: 20150245826
    Abstract: A surgical device comprises a tube including a proximal segment and a distal segment and a plurality of force transmission elements coupled to the tube. The force transmission elements are actuatable to alter the distal segment of the tube between a flexible state and a stiffened state. The device also comprises a plurality of routing members. Each routing member is coupled to a wall of the tube. The routing members are configured to receive and route the force transmission elements along a length of the tube while permitting the length of the tube to flex and compress. The device also comprises a decoupling structure that generates a reduced force transmitted to the proximal segment when an applied force is applied to the distal segment by the force transmission elements.
    Type: Application
    Filed: May 15, 2015
    Publication date: September 3, 2015
    Inventors: Katherine D. Stoy, Giuseppe Maria Prisco, Samuel Kwok Wai Au, Carolyn Fenech
  • Patent number: 9101379
    Abstract: Control systems and methods for a medical instrument use measurements to determine and control the tensions that actuators apply through instrument transmission systems. The use of tension and feedback allows control of a medical instrument having transmission systems that provide non-negligible compliance between joints and actuators even when the positions of joints cannot be directly related to actuator positions. One embodiment determines joint torques and tensions from differences between desired and measured joint positions. Another embodiment determines joint torques and tensions from differences between desired and measured positions of a tip of the instrument. Determination of tensions from joint torques can be performed using sequential evaluation of joints in an order from a distal end of the instrument toward a proximal end of the instrument.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: August 11, 2015
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Samuel Kwok Wai Au, Giuseppe Maria Prisco
  • Patent number: 9055960
    Abstract: A surgical device can include a tube comprising a wall having a plurality of slits oriented generally transverse to a longitudinal axis of the tube. Each of the slits may be defined by opposing surfaces. The surgical device can further include a force transmission element coupled to the tube. In a flexible state of the tube, at least some of the opposing surfaces defining respective slits are separated from one another, and in a stiffened state of the tube, a force exerted on the force transmission element causes the opposing surfaces of each slit to contact one another.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: June 16, 2015
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Katherine D. Stoy, Giuseppe Maria Prisco, Samuel Kwok Wai Au, Carolyn Fenech
  • Publication number: 20140128849
    Abstract: A medical instrument including a shaft and an actuated structure mounted at a distal end of the shaft can employ a pair of tendons connected to the actuated structure, extending down the shaft, and respectively wound around a capstan in opposite directions. A preload system may be coupled to maintain minimum tensions in the tendons.
    Type: Application
    Filed: October 31, 2013
    Publication date: May 8, 2014
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: Samuel Kwok Wai Au, Stephen J. Blumenkranz, Giuseppe Maria Prisco
  • Publication number: 20140052298
    Abstract: Methods, apparatus, and systems for controlling the movement of a mechanical body. In accordance with a method, desired movement information is received that identifies a desired motion of a mechanical body, the mechanical body having a first number of degrees of freedom. A plurality of instructions are then generated by applying the received desired movement information to a kinematic model, the kinematic model having a second number of degrees of freedom greater than the first number of degrees of freedom, each of the instructions being configured to control a corresponding one of the second number of degrees of freedom. A subset of the plurality of instructions are then transmitted for use in controlling the first number of degrees of freedom of the mechanical body.
    Type: Application
    Filed: August 14, 2013
    Publication date: February 20, 2014
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: Arjang M. Hourtash, Samuel Kwok Wai Au, Raymond A. Bonneau, Nicola Diolaiti, Pushkar Hingwe, Amy E. Kerdok, Michael Turner
  • Publication number: 20140052151
    Abstract: Methods, apparatus, and systems for performing minimally invasive surgery through an aperture of a patient. In accordance with a method, parameters are received from an input device associated with a surgeon, the parameters indicating a desired state of an end effector of a surgical instrument oriented through the aperture. The surgical instrument is included in a mechanical assembly having a first set of joints. Instructions are then computed for controlling the mechanical assembly using the received parameters by computing instructions for controlling a second set joints, the second set of joints including the first set of joints and an additional joint, the additional joint being absent from the mechanical assembly. The mechanical assembly is then driven so as to move the end effector toward the desired state based on the computed instructions.
    Type: Application
    Filed: August 14, 2013
    Publication date: February 20, 2014
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: Pushkar Hingwe, Samuel Kwok Wai Au, Raymond A. Bonneau, Nicola Diolaiti, Arjang M. Hourtash, Amy E. Kerdok, Michael Turner
  • Publication number: 20140052152
    Abstract: Methods, apparatus, and systems for operating a surgical system. In accordance with a method, a position of a surgical instrument is measured, the surgical instrument being included in a mechanical assembly having a plurality of joints and a first number of degrees of freedom, the position of the surgical instrument being measured for each of a second number of degrees of freedom of the surgical instrument. The method further includes estimating a position of each of the joints, where estimating the position of each joint includes applying the position measurements to at least one kinematic model of the mechanical assembly, the kinematic model having a third number of degrees of freedom greater than the first number of degrees of freedom. The method further includes controlling the mechanical assembly based on the estimated position of the joints.
    Type: Application
    Filed: August 14, 2013
    Publication date: February 20, 2014
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: Samuel Kwok Wai Au, Raymond A. Bonneau, Nicola Diolaiti, Pushkar Hingwe, Arjang M. Hourtash, Amy E. Kerdok, Michael Turner