Patents by Inventor Samuel Vinod Thamboo

Samuel Vinod Thamboo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9039960
    Abstract: A formed article comprising a nanostructured ferritic alloy is provided. Advantageously, the article is not formed via extrusion, and thus, cost savings are provided. Methods are also provided for forming the article, and the articles so produced, exhibit sufficient continuous cycle fatigue crack growth resistance and hold time fatigue crack growth resistance to be utilized as turbomachinery components, and in particular, large, hot section components of a gas or steam turbine engines. In other embodiments, a turbomachinery component comprising an NFA is provided, and in some such embodiments, the turbomachinery component may be extruded.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: May 26, 2015
    Assignee: General Electric Company
    Inventors: Richard Didomizio, Matthew Joseph Alinger, Raymond Joseph Stonitsch, Samuel Vinod Thamboo
  • Patent number: 8616851
    Abstract: An article includes a first section extending from an outer periphery to a predetermined surface located inward from the outer periphery. The first section comprises a nanostructured ferritic alloy. The article includes a second section extending from an inner periphery to the predetermined surface located outward from the inner periphery. The second section comprises at least one other alloy different from the nanostructured ferritic alloy.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: December 31, 2013
    Assignee: General Electric Company
    Inventors: Richard DiDomizio, Matthew Joseph Alinger, Samuel Vinod Thamboo, Raymond Joseph Stonitsch
  • Patent number: 8357328
    Abstract: A formed article comprising a nanostructured ferritic alloy is provided. Advantageously, the article is not formed via extrusion, and thus, cost savings are provided. Methods are also provided for forming the article, and the articles so produced, exhibit sufficient continuous cycle fatigue crack growth resistance and hold time fatigue crack growth resistance to be utilized as turbomachinery components, and in particular, large, hot section components of a gas or steam turbine engines. In other embodiments, a turbomachinery component comprising an NFA is provided, and in some such embodiments, the turbomachinery component may be extruded.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: January 22, 2013
    Assignee: General Electric Company
    Inventors: Richard Didomizio, Matthew Joseph Alinger, Raymond Joseph Stonitsch, Samuel Vinod Thamboo
  • Publication number: 20110250074
    Abstract: An article includes a first section extending from an outer periphery to a predetermined surface located inward from the outer periphery. The first section comprises a nanostructured ferritic alloy. The article includes a second section extending from an inner periphery to the predetermined surface located outward from the inner periphery. The second section comprises at least one other alloy different from the nanostructured ferritic alloy.
    Type: Application
    Filed: April 9, 2010
    Publication date: October 13, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Richard DiDomizio, Matthew Joseph Alinger, Samuel Vinod Thamboo, Raymond Joseph Stonitsch
  • Publication number: 20110142708
    Abstract: A formed article comprising a nanostructured ferritic alloy is provided. Advantageously, the article is not formed via extrusion, and thus, cost savings are provided. Methods are also provided for forming the article, and the articles so produced, exhibit sufficient continuous cycle fatigue crack growth resistance and hold time fatigue crack growth resistance to be utilized as turbomachinery components, and in particular, large, hot section components of a gas or steam turbine engines. In other embodiments, a turbomachinery component comprising an NFA is provided, and in some such embodiments, the turbomachinery component may be extruded.
    Type: Application
    Filed: December 14, 2009
    Publication date: June 16, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Richard Didomizio, Matthew Joseph Alinger, Raymond Joseph Stonitsch, Samuel Vinod Thamboo
  • Patent number: 7575418
    Abstract: Disclosed herein is a turbine component comprising a substrate; and a protective structure formed on the substrate, wherein the protective structure comprises an ?-? titanium alloy, a ?-titanium alloy or a near-? titanium alloy. Disclosed herein too is a process for providing a protective structure to a turbine component, comprising affixing a protective structure on a turbine component; wherein the protective structure comprises an ?-? titanium alloy, a near-? titanium alloy or a ?-titanium alloy.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: August 18, 2009
    Assignee: General Electric Company
    Inventors: Michael Francis Xavier Gigliotti, Canan Uslu Hardwicke, Liang Jiang, Don Mark Lipkin, Samuel Vinod Thamboo
  • Publication number: 20080181808
    Abstract: A method of treating an article including a titanium alloy having 5-6.5% aluminum by weight; 1.5-2.5% tin by weight; 1.5-2.5% chromium by weight; 1.5-2.5% molybdenum by weight; 1.5-2.5% zirconium by weight; and titanium. The method includes heat treating the titanium alloy without exposing the titanium alloy to a beta anneal process. There is also an article that has been subjected to a heat treatment process that does not include a beta anneal.
    Type: Application
    Filed: January 31, 2007
    Publication date: July 31, 2008
    Inventors: Samuel Vinod Thamboo, Ling Yang
  • Patent number: 7217330
    Abstract: A method of heat treating a turbine rotor disk to obtain different radial properties at different locations in the rotor disk includes a) heating the rotor disk for a period of from 4 to 10 hours at a temperature of 1800° F.; b) cooling the rotor disk to a temperature of about 1550° F.; c) holding the rotor disk at about 1550° F. for a period of from about 2 to about 4 hours; d) cooling the rotor disk to room temperature; e) precipitation aging the rotor disk by heating the rotor disk to temperature of 1325° F. for 8 hours, holding it at 1150° F. for 8 hours, and f) cooling the rotor disk.
    Type: Grant
    Filed: August 6, 2003
    Date of Patent: May 15, 2007
    Assignee: General Electric Company
    Inventors: Samuel Vinod Thamboo, Michael Francis Henry
  • Patent number: 6531002
    Abstract: An article, such as a turbine engine component, formed from a nickel-base superalloy, the nickel-base superalloy containing a &ggr;″ tetragonal phase and comprising aluminum, titanium, tantalum, niobium, chromium, molybdenum, and the balance nickel, wherein the article has a time dependent crack propagation resistance of at least about 20 hours to failure at about 1100° F. in the presence of steam. The invention also includes a nickel-base superalloy for forming such and article and methods of forming the article and making the nickel-base superalloy.
    Type: Grant
    Filed: April 24, 2001
    Date of Patent: March 11, 2003
    Assignees: General Electric Company, INCO Alloys International Inc.
    Inventors: Michael Francis Henry, Elena Rozier Gearing, Samuel Vinod Thamboo, Sarwan Kumar Mannan, John Joseph deBarbadillo, II
  • Publication number: 20030034098
    Abstract: An article, such as a turbine engine component, formed from a nickel-base superalloy, the nickel-base superalloy containing a &ggr;″ tetragonal phase and comprising aluminum, titanium, tantalum, niobium, chromium, molybdenum, and the balance nickel, wherein the article has a time dependent crack propagation resistance of at least about 20 hours to failure at about 1100° F. in the presence of steam. The invention also includes a nickel-base superalloy for forming such and article and methods of forming the article and making the nickel-base superalloy.
    Type: Application
    Filed: April 24, 2001
    Publication date: February 20, 2003
    Applicant: General Electric Company
    Inventors: Michael Francis Henry, Elena Rozier Gearing, Samuel Vinod Thamboo, Sarwan Kumar Mannan, John Joseph deBarbadillo
  • Patent number: 6264717
    Abstract: An article that comprises a fine-grain, homogeneous microstructure is essentially oxide- and sulfide-free and segregation defect free. The article is produced by a process that comprises forming a source of clean refined metal that has oxides and sulfides refined out by electroslag refining; and forming the article by nucleated casting. The invention also sets forth the article made by a system for implementing the clean metal nucleated casting process.
    Type: Grant
    Filed: November 15, 1999
    Date of Patent: July 24, 2001
    Assignee: General Electric Company
    Inventors: William Thomas Carter, Jr., Mark Gilbert Benz, Robert John Zabala, Bruce Alan Knudsen, Samuel Vinod Thamboo
  • Patent number: RE40501
    Abstract: An article, such as a turbine engine component, formed from a nickel-base superalloy, the nickel-base superalloy containing a ?? tetragonal phase and comprising aluminum, titanium, tantalum, niobium, chromium, molybdenum, and the balance nickel, wherein the article has a time dependent crack propagation resistance of at least about 20 hours to failure at about 1100° F. in the presence of steam. The invention also includes a nickel-base superalloy for forming such and article and methods of forming the article and making the nickel-base superalloy.
    Type: Grant
    Filed: March 10, 2005
    Date of Patent: September 16, 2008
    Assignee: General Electric Company
    Inventors: Michael Francis Henry, Elena Rozier, Samuel Vinod Thamboo, Sarwan Kumar Mannan, John Joseph deBarbadillo, II