Patents by Inventor Samuel Y. CHANG

Samuel Y. CHANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11992188
    Abstract: A medical system includes a flexible elongate instrument and a control unit. The control unit is configured to determine a force exerted by the flexible elongate instrument on tissue of a patient, determine a driving state of the flexible elongate instrument, set a force threshold based on the driving state, and provide feedback to an operator in response to the determined force being higher than the force threshold. Different driving states are associated with different force thresholds.
    Type: Grant
    Filed: April 28, 2023
    Date of Patent: May 28, 2024
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Nicola Diolaiti, Federico Barbagli, Samuel Y. Chang, Vincent Duindam
  • Publication number: 20240065779
    Abstract: Systems and methods for responding to faults in a robotic system are provided herein. In some embodiments, the system includes an elongate body having a proximal end and a distal end, a backend housing coupled to the proximal end of the elongate body, and a control system. The backend housing includes one or more actuators configured to manipulate the distal end of the elongate body. The control system is configured to control the robotic system by performing operations including: determining an operational state of the medical robotic system, detecting a fault in one or more components of the medical robotic system, classifying the fault according to one or more heuristics, and imposing a fault reaction state on the medical robotic system based on the one or more heuristics to mitigate the fault.
    Type: Application
    Filed: October 20, 2023
    Publication date: February 29, 2024
    Inventors: Federico Barbagli, Christopher R. Carlson, Samuel Y. Chang, Nicola Diolaiti, Vincent Duindam, Salomon J. Trujillo
  • Publication number: 20230400207
    Abstract: Techniques for performing an emissions demand response event are described. In an example, a power control server system receives an emissions rate forecast for a predefined future time period. Using the emissions rate forecast, an emissions rate event is identified during the predefined future time period. Based on the plurality of emissions rate event, an emissions demand response event is generated during the predefined future time period. The power control server system then causes a power controller to modify an energy consumption by an electronic device in accordance with the generated emissions demand response event.
    Type: Application
    Filed: August 24, 2023
    Publication date: December 14, 2023
    Applicant: Google LLC
    Inventors: Samuel Y. Chang, Kristoffer J. Donhowe, Ramya Bhagavatula, Jeffrey Gleeson, Kevin Chen
  • Patent number: 11832891
    Abstract: A medical robotic system includes a control system and a manipulator assembly including actuators to manipulate a flexible elongate body, including a rotation actuator to bend the flexible elongate body. The control system is configured to perform: determining an operational state of the system; detecting a fault in one or more components of the system; classifying the fault with one or more classifications of a plurality of classifications according to heuristics; and imposing a fault reaction state on the system based on the classifications to mitigate the fault. The control system is configured to impose a first fault reaction state for a motion actuation fault and impose a second fault reaction state for a non-motion actuation fault. The first fault reaction state includes controlling the rotation actuator to cause the elongate body to become compliant to external forces placed upon the elongate body by walls of an anatomical passageway.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: December 5, 2023
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Federico Barbagli, Christopher R. Carlson, Samuel Y. Chang, Nicola Diolaiti, Vincent Duindam, Salomon J. Trujillo
  • Patent number: 11835246
    Abstract: Techniques for performing an emissions demand response event are described. In an example, a cloud-based HVAC control server system obtains a history of emissions rates. Based on the history of emissions rates, a future time period of predicted high emissions is identified. An emission demand response event participation level of an account mapped to a thermostat is determined for the future time period of predicted high emissions. The emissions demand response event participation level may be one of a plurality of emissions demand response event participation levels. based on the emissions demand response event participation level of the account, an emissions demand response event is generated during the future time period of predicted high emissions. The cloud-based HVAC control server system then causes a thermostat to control an HVAC system in accordance with the generated emissions demand response event.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: December 5, 2023
    Assignee: Google LLC
    Inventors: Samuel Y. Chang, Kristoffer J. Donhowe, Ramya Bhagavatula, Jeffrey Gleeson, Kevin Chen
  • Patent number: 11781769
    Abstract: Techniques for performing an emissions demand response event are described. In an example, a cloud-based HVAC control server system receives an emissions rate forecast for a predefined future time period. Using the emissions rate forecast, a plurality of emissions differential values are created for a plurality of points in time during the predefined future time period. The emissions differential values represent a change in predicted emissions over time. Based on the plurality of emissions differential values and a predefined maximum number of emissions demand response events, an emissions demand response event is generated during the predefined future time period. The cloud-based HVAC control server system then causes a thermostat to control an HVAC system in accordance with the generated emissions demand response event.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: October 10, 2023
    Assignee: Google LLC
    Inventors: Samuel Y. Chang, Kristoffer J. Donhowe, Ramya Bhagavatula, Jeffrey Gleeson, Kevin Chen
  • Patent number: 11747036
    Abstract: Techniques for performing an emissions demand response event are described. In an example, a cloud-based HVAC control server system obtains an emissions rate forecast for a predefined future time period. Using the emissions rate forecast, a future emissions rate event during the predefined future time period is identified. The future emissions rate event comprises an indication of predicted magnitude and a time period when a predicted emissions rate will be at an increased or decreased level. A confidence value indicating a certainty of the future emissions rate event occurring as predicted is determined. Based on the identified future emissions rate event and the confidence value, an emissions demand response event having a start time and an end time during the future emissions rate event is generated. The cloud-based HVAC control server system then causes a thermostat to control an HVAC system in accordance with the generated emissions demand response event.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: September 5, 2023
    Assignee: Google LLC
    Inventors: Samuel Y. Chang, Kristoffer J. Donhowe, Ramya Bhagavatula, Jeffrey Gleeson, Kevin Chen
  • Publication number: 20230263373
    Abstract: Systems and methods for detecting environmental forces on a flexible elongate instrument include an actuator for inserting and retracting the instrument and a control unit. The control unit is configured to determine a force exerted by the instrument on tissue of a patient. The force is determined based on one or more of a shape of the instrument, a force being exerted by the actuator, or an amount of force being applied at a proximal end of the instrument. In some embodiments the control unit determines the shape using a shape sensor. In some embodiments, the control unit determines the force exerted by the actuator based on a current of the actuator. In some embodiments, the control unit determines the amount of force being applied to the proximal end of the instrument using a force sensor located proximal to the instrument.
    Type: Application
    Filed: April 28, 2023
    Publication date: August 24, 2023
    Inventors: Nicola Diolaiti, Federico Barbagli, Samuel Y. Chang, Vincent Duindam
  • Patent number: 11672412
    Abstract: A medical device includes a flexible elongate instrument, an actuator for inserting and retracting the instrument, and a control unit configured to determine at least one of a force being exerted by the actuator or an amount of force applied at a proximal end of the instrument. The control unit is configured to determine a force exerted by the instrument on tissue of a patient based on a shape of the instrument and at least one of the force exerted by the actuator or the force applied at the proximal end. A method of operating a medical device includes: determining a shape of a flexible elongate instrument and at least one of a first force exerted by an actuator or a second force applied to a proximal end; and determining a third force, exerted on tissue, based on the shape and at least one of the first or second forces.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: June 13, 2023
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Nicola Diolaiti, Federico Barbagli, Samuel Y. Chang, Vincent Duindam
  • Publication number: 20220404052
    Abstract: Techniques for performing an emissions demand response event are described. In an example, a cloud-based HVAC control server system obtains an emissions rate forecast for a predefined future time period. Using the emissions rate forecast, a future emissions rate event during the predefined future time period is identified. The future emissions rate event comprises an indication of predicted magnitude and a time period when a predicted emissions rate will be at an increased or decreased level. A confidence value indicating a certainty of the future emissions rate event occurring as predicted is determined. Based on the identified future emissions rate event and the confidence value, an emissions demand response event having a start time and an end time during the future emissions rate event is generated. The cloud-based HVAC control server system then causes a thermostat to control an HVAC system in accordance with the generated emissions demand response event.
    Type: Application
    Filed: June 17, 2021
    Publication date: December 22, 2022
    Applicant: Google LLC
    Inventors: Samuel Y. Chang, Kristoffer J. Donhowe, Ramya Bhagavatula, Jeffrey Gleeson, Kevin Chen
  • Publication number: 20220404050
    Abstract: Techniques for performing an emissions demand response (EDR) event are described. In an example, a cloud-based HVAC control system may obtain a first emissions rate forecast and generate an EDR event with a start time and end time based on the first emissions rate forecast. The EDR event may then be transmitted to a thermostat and stored in a memory of the thermostat. At the start time, the thermostat may commence controlling an HVAC system according to the EDR event. After the start time and prior to the end time, the cloud-based HVAC control system may obtain a second emissions rate forecast and generate a modified EDR event with a modified end time. The modified EDR event may be transmitted to the thermostat before the end time and/or the modified end time whereupon the thermostat may control the HVAC system accordingly until the modified end time is reached.
    Type: Application
    Filed: June 17, 2021
    Publication date: December 22, 2022
    Applicant: Google LLC
    Inventors: Samuel Y. Chang, Kristoffer J. Donhowe, Ramya Bhagavatula, Jeffrey Gleeson, Kevin Chen
  • Publication number: 20220404051
    Abstract: Techniques for performing an emissions demand response event are described. In an example, a cloud-based HVAC control server system obtains a history of emissions rates. Based on the history of emissions rates, a future time period of predicted high emissions is identified. An emission demand response event participation level of an account mapped to a thermostat is determined for the future time period of predicted high emissions. The emissions demand response event participation level may be one of a plurality of emissions demand response event participation levels. based on the emissions demand response event participation level of the account, an emissions demand response event is generated during the future time period of predicted high emissions. The cloud-based HVAC control server system then causes a thermostat to control an HVAC system in accordance with the generated emissions demand response event.
    Type: Application
    Filed: June 17, 2021
    Publication date: December 22, 2022
    Applicant: Google LLC
    Inventors: Samuel Y. Chang, Kristoffer J. Donhowe, Ramya Bhagavatula, Jeffrey Gleeson, Kevin Chen
  • Publication number: 20220404049
    Abstract: Techniques for performing an emissions demand response event are described. In an example, a cloud-based HVAC control server system receives an emissions rate forecast for a predefined future time period. Using the emissions rate forecast, a plurality of emissions differential values are created for a plurality of points in time during the predefined future time period. The emissions differential values represent a change in predicted emissions over time. Based on the plurality of emissions differential values and a predefined maximum number of emissions demand response events, an emissions demand response event is generated during the predefined future time period. The cloud-based HVAC control server system then causes a thermostat to control an HVAC system in accordance with the generated emissions demand response event.
    Type: Application
    Filed: June 17, 2021
    Publication date: December 22, 2022
    Applicant: Google LLC
    Inventors: Samuel Y. Chang, Kristoffer J. Donhowe, Ramya Bhagavatula, Jeffrey Gleeson, Kevin Chen
  • Publication number: 20220273377
    Abstract: A medical system includes a flexible elongate instrument and a control system. The flexible elongate instrument includes a plurality of wires useable to control articulation of the flexible elongate instrument. The control system is configured to monitor movement of the flexible elongate instrument, determine an extent of motion of the flexible elongate instrument based on the monitoring, and determine a mode of operation for the flexible elongate instrument from a plurality of modes of operation based on the monitoring. The plurality of modes of operation includes a retraction mode, an insertion mode, and a parking mode. The control system is further configured to, in response to a change in the mode of operation, alter a rigidity of the flexible elongate instrument with a rate of rigidity change that is based on the extent of motion using one or more of the plurality of wires.
    Type: Application
    Filed: April 29, 2022
    Publication date: September 1, 2022
    Inventors: NICOLA DIOLAITI, Samuel Y. Chang, Vincent Duindam
  • Patent number: 11344376
    Abstract: A computer-assisted medical system comprises a flexible elongate instrument. The flexible elongate instrument comprises a plurality of wires extending from a proximal end of the flexible elongate instrument to a distal end of the flexible elongate instrument. Each wire of the plurality of wires may be used to steer the distal end. The system also comprises a control system coupled to the flexible elongate instrument. The control system is configured to monitor movement of the flexible elongate instrument along a longitudinal central axis and determine an extent of motion of the flexible elongate instrument in a first direction along the longitudinal central axis based on the monitoring. The control system is also configured to alter a rigidity of the flexible elongate instrument based on a rigidity profile relative to the extent of motion by adjusting one or more forces applied by the plurality of wires to the distal end of the flexible elongate instrument.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: May 31, 2022
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Nicola Diolaiti, Samuel Y. Chang, Vincent Duindam
  • Publication number: 20200253669
    Abstract: Systems and methods for detecting environmental forces on a flexible elongate instrument include an actuator for inserting and retracting the instrument and a control unit. The control unit is configured to determine a force exerted by the instrument on tissue of a patient. The force is determined based on one or more of a shape of the instrument, a force being exerted by the actuator, or an amount of force being applied at a proximal end of the instrument. In some embodiments the control unit determines the shape using a shape sensor. In some embodiments, the control unit determines the force exerted by the actuator based on a current of the actuator. In some embodiments, the control unit determines the amount of force being applied to the proximal end of the instrument using a force sensor located proximal to the instrument.
    Type: Application
    Filed: October 5, 2018
    Publication date: August 13, 2020
    Inventors: Nicola Diolaiti, Federico Barbagli, Samuel Y. Chang, Vincent Duindam
  • Publication number: 20200078096
    Abstract: Systems and methods for responding to faults in a robotic system are provided herein. In some embodiments, the system includes an elongate body having a proximal end and a distal end, a backend housing coupled to the proximal end of the elongate body, and a control system. The backend housing includes one or more actuators configured to manipulate the distal end of the elongate body. The control system is configured to control the robotic system by performing operations including: determining an operational state of the medical robotic system, detecting a fault in one or more components of the medical robotic system, classifying the fault according to one or more heuristics, and imposing a fault reaction state on the medical robotic system based on the one or more heuristics to mitigate the fault.
    Type: Application
    Filed: June 30, 2017
    Publication date: March 12, 2020
    Inventors: Federico Barbagli, Christopher R. Carlson, Samuel Y. Chang, Nicola Diolaiti, Vincent Duindam, Salomon J. Trujillo
  • Patent number: 10378883
    Abstract: An optical force sensor along with an optical processing apparatus and method are disclosed. The optical force sensor includes an optical fiber, a core included in the optical fiber, an instrument including the optical fiber, the instrument having a distal region, and a tubular structure encasing an end of the optical fiber and secured to the first conduit at the distal region of the instrument. When an optical interferometric system is coupled to the optical fiber, it processes reflected light from a portion of the core included within the tubular structure that does not include Bragg gratings to produce a measurement of a force present at the distal region of the instrument.
    Type: Grant
    Filed: May 12, 2016
    Date of Patent: August 13, 2019
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Dawn K. Gifford, Federico Barbagli, Samuel Y. Chang, Anoop B. Kowshik, Oliver J. Wagner, Michael D. Paris, Mark E. Froggatt
  • Publication number: 20190231449
    Abstract: A computer-assisted medical system comprises a flexible elongate instrument. The flexible elongate instrument comprises a plurality of wires extending from a proximal end of the flexible elongate instrument to a distal end of the flexible elongate instrument. Each wire of the plurality of wires may be used to steer the distal end. The system also comprises a control system coupled to the flexible elongate instrument. The control system is configured to monitor movement of the flexible elongate instrument along a longitudinal central axis and determine an extent of motion of the flexible elongate instrument in a first direction along the longitudinal central axis based on the monitoring. The control system is also configured to alter a rigidity of the flexible elongate instrument based on a rigidity profile relative to the extent of motion by adjusting one or more forces applied by the plurality of wires to the distal end of the flexible elongate instrument.
    Type: Application
    Filed: June 30, 2017
    Publication date: August 1, 2019
    Inventors: Nicola Diolaiti, Samuel Y. Chang, Vincent Duindam
  • Publication number: 20180128599
    Abstract: An optical force sensor along with an optical processing apparatus and method are disclosed. The optical force sensor includes an optical fiber, a core included in the optical fiber, an instrument including the optical fiber, the instrument having a distal region, and a tubular structure encasing an end of the optical fiber and secured to the first conduit at the distal region of the instrument. When an optical interferometric system is coupled to the optical fiber, it processes reflected light from a portion of the core included within the tubular structure that does not include Bragg gratings to produce a measurement of a force present at the distal region of the instrument.
    Type: Application
    Filed: May 12, 2016
    Publication date: May 10, 2018
    Inventors: Dawn K. GIFFORD, Federico BARBAGLI, Samuel Y. CHANG, Anoop B. KOWSHIK, Oliver J. WAGNER, Michael D. PARIS, Mark E. FROGGATT