Patents by Inventor Samvel Sarkisyan

Samvel Sarkisyan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8896915
    Abstract: The various laser architectures described herein provide increased gain of optical energy as well as compensation of optical phase distortions in a thin disk gain medium. An optical amplifier presented herein provides for scalable high energy extraction and gains based on a number of passes of the signal beam through a gain medium. Multiple, spatially separate, optical paths may also be passed through the same gain region to provide gain clearing by splitting off a small percentage of an output pulse and sending it back through the amplifier along a slightly different path. By clearing out the residual gain, uniform signal amplitudes can be obtained.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: November 25, 2014
    Assignee: Applied Energetics
    Inventors: Paul B. Lundquist, Samvel Sarkisyan, Eric A. Wilson
  • Patent number: 8891162
    Abstract: A laser amplifier system is presented including a pump regenerative amplifier. The amplifier generally has a cavity defined by a pair of end cavity mirrors between which an amplified pump pulse oscillates. The amplifier also includes an interaction cell with a tunable gain medium amplifies laser pulses (e.g., Raman gain). The interaction cell may be positioned within the pump amplifier cavity and an input pulse may be injected into the cavity of the amplifier to transit through the tunable gain medium of the interaction cell. A pump pulse transfers energy via interaction with the input pulse (e.g., Raman interaction) as the pulses counter-propagate through the gain medium of the interaction cell. Amplification of output laser pulses, however, is generally achieved according to the wavelength of the pump laser pulses thereby providing a wavelength dependent, or “tunable”, means for amplifying laser pulses.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: November 18, 2014
    Assignee: Applied Energetics, Inc.
    Inventors: Stephen W. McCahon, Samvel Sarkisyan, Paul B. Lundquist
  • Patent number: 8749880
    Abstract: The various laser architectures described herein provide increased gain of optical energy as well as compensation of optical phase distortions in a thin disk gain medium. An optical amplifier presented herein provides for scalable high energy extraction and gains based on a number of passes of the signal beam through a gain medium. Multiple, spatially separate, optical paths may also be passed through the same gain region to provide gain clearing by splitting off a small percentage of an output pulse and sending it back through the amplifier along a slightly different path. By clearing out the residual gain, uniform signal amplitudes can be obtained.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: June 10, 2014
    Assignee: Applied Energetics
    Inventors: Samvel Sarkisyan, Paul B. Lundquist, Eric A. Wilson
  • Patent number: 8665516
    Abstract: The various laser architectures described herein provide increased gain of optical energy as well as compensation of optical phase distortions in a thin disk gain medium. An optical amplifier presented herein provides for scalable high energy extraction and gains based on a number of passes of the signal beam through a gain medium. Multiple, spatially separate, optical paths may also be passed through the same gain region to provide gain clearing by splitting off a small percentage of an output pulse and sending it back through the amplifier along a slightly different path. By clearing out the residual gain, uniform signal amplitudes can be obtained.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: March 4, 2014
    Assignee: Applied Energetics, Inc.
    Inventors: Samvel Sarkisyan, Paul B. Lundquist, Eric A. Wilson, Kyle Christian Heideman
  • Patent number: 8605355
    Abstract: Presented herein is a multipass optical amplifier including a thin-disk gain medium, a first reflective element optically coupled to the gain medium, a first parabolic reflector in optical communication with the gain medium and the first reflective element, a second parabolic reflector in optical communication with the first parabolic reflector, and a second reflective element in optical communication with the second parabolic reflector. The amplifier also includes a pump source, a signal beam source, and a chamber having first and second regions configured about the multipass optical amplifier with a port that extracts gas from the chamber. The first region includes the first parabolic reflector, the gain medium, and the first reflective element. The second region of the chamber includes the second reflective element and the second parabolic reflector. An input optic propagates the signal beam through the amplifier to impinge the gain medium multiple times for gain.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: December 10, 2013
    Assignee: Applied Energetics
    Inventors: Paul B. Lundquist, Samvel Sarkisyan, Eric A. Wilson, Raymond M. Copenhaver, Hector Martin, Steven McCahon
  • Publication number: 20120212804
    Abstract: The various laser architectures described herein provide increased gain of optical energy as well as compensation of optical phase distortions in a thin disk gain medium. An optical amplifier presented herein provides for scalable high energy extraction and gains based on a number of passes of the signal beam through a gain medium. Multiple, spatially separate, optical paths may also be passed through the same gain region to provide gain clearing by splitting off a small percentage of an output pulse and sending it back through the amplifier along a slightly different path. By clearing out the residual gain, uniform signal amplitudes can be obtained.
    Type: Application
    Filed: January 24, 2012
    Publication date: August 23, 2012
    Inventors: Samvel Sarkisyan, Paul B. Lundquist, Eric A. Wilson, Kyle Christine Heideman
  • Publication number: 20110249318
    Abstract: A laser amplifier system is presented including a pump regenerative amplifier. The amplifier generally has a cavity defined by a pair of end cavity mirrors between which an amplified pump pulse oscillates. The amplifier also includes an interaction cell with a tunable gain medium amplifies laser pulses (e.g., Raman gain). The interaction cell may be positioned within the pump amplifier cavity and an input pulse may be injected into the cavity of the amplifier to transit through the tunable gain medium of the interaction cell. A pump pulse transfers energy via interaction with the input pulse (e.g., Raman interaction) as the pulses counter-propagate through the gain medium of the interaction cell. Amplification of output laser pulses, however, is generally achieved according to the wavelength of the pump laser pulses thereby providing a wavelength dependent, or “tunable”, means for amplifying laser pulses.
    Type: Application
    Filed: June 20, 2011
    Publication date: October 13, 2011
    Inventors: Stephen W. McCahon, Samvel Sarkisyan, Paul B. Lundquist
  • Patent number: 7982947
    Abstract: A laser amplifier system is presented including a pump regenerative amplifier. The amplifier generally has a cavity defined by a pair of end cavity mirrors between which an amplified pump pulse oscillates. The amplifier also includes an interaction cell with a tunable gain medium amplifies laser pulses (e.g., Raman gain). The interaction cell may be positioned within the pump amplifier cavity and an input pulse may be injected into the cavity of the amplifier to transit through the tunable gain medium of the interaction cell. A pump pulse transfers energy via interaction with the input pulse (e.g., Raman interaction) as the pulses counter-propagate through the gain medium of the interaction cell. Amplification of output laser pulses, however, is generally achieved according to the wavelength of the pump laser pulses thereby providing a wavelength dependent, or “tunable”, means for amplifying laser pulses.
    Type: Grant
    Filed: January 8, 2008
    Date of Patent: July 19, 2011
    Assignee: Applied Energetics, Inc
    Inventors: Stephen W. McCahon, Samvel Sarkisyan, Paul B. Lundquist
  • Publication number: 20110157689
    Abstract: The various laser architectures described herein provide increased gain of optical energy as well as compensation of optical phase distortions in a thin disk gain medium. An optical amplifier presented herein provides for scalable high energy extraction and gains based on a number of passes of the signal beam through a gain medium. Multiple, spatially separate, optical paths may also be passed through the same gain region to provide gain clearing by splitting off a small percentage of an output pulse and sending it back through the amplifier along a slightly different path. By clearing out the residual gain, uniform signal amplitudes can be obtained.
    Type: Application
    Filed: November 24, 2010
    Publication date: June 30, 2011
    Inventors: Paul B. Lundquist, Samvel Sarkisyan, Eric A. Wilson, Raymond M. Copenhaver, Hector Martin, Steven McCahon
  • Publication number: 20110134511
    Abstract: The various laser architectures described herein provide increased gain of optical energy as well as compensation of optical phase distortions in a thin disk gain medium. An optical amplifier presented herein provides for scalable high energy extraction and gains based on a number of passes of the signal beam through a gain medium. Multiple, spatially separate, optical paths may also be passed through the same gain region to provide gain clearing by splitting off a small percentage of an output pulse and sending it back through the amplifier along a slightly different path. By clearing out the residual gain, uniform signal amplitudes can be obtained.
    Type: Application
    Filed: November 24, 2010
    Publication date: June 9, 2011
    Inventors: Samvel Sarkisyan, Paul B. Lundquist, Eric A. Wilson
  • Publication number: 20110122483
    Abstract: The various laser architectures described herein provide increased gain of optical energy as well as compensation of optical phase distortions in a thin disk gain medium. An optical amplifier presented herein provides for scalable high energy extraction and gains based on a number of passes of the signal beam through a gain medium. Multiple, spatially separate, optical paths may also be passed through the same gain region to provide gain clearing by splitting off a small percentage of an output pulse and sending it back through the amplifier along a slightly different path. By clearing out the residual gain, uniform signal amplitudes can be obtained.
    Type: Application
    Filed: November 24, 2010
    Publication date: May 26, 2011
    Inventors: Paul B. Lundquist, Samvel Sarkisyan, Eric A. Wilson
  • Publication number: 20090174930
    Abstract: A laser amplifier system is presented including a pump regenerative amplifier. The amplifier generally has a cavity defined by a pair of end cavity mirrors between which an amplified pump pulse oscillates. The amplifier also includes an interaction cell with a tunable gain medium amplifies laser pulses (e.g., Raman gain). The interaction cell may be positioned within the pump amplifier cavity and an input pulse may be injected into the cavity of the amplifier to transit through the tunable gain medium of the interaction cell. A pump pulse transfers energy via interaction with the input pulse (e.g., Raman interaction) as the pulses counter-propagate through the gain medium of the interaction cell. Amplification of output laser pulses, however, is generally achieved according to the wavelength of the pump laser pulses thereby providing a wavelength dependent, or “tunable”, means for amplifying laser pulses.
    Type: Application
    Filed: January 8, 2008
    Publication date: July 9, 2009
    Inventors: Stephen W. McCahon, Samvel Sarkisyan, Paul B. Lundquist