Patents by Inventor Sandeep Nijhawan

Sandeep Nijhawan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7560364
    Abstract: In accordance with the present invention, improved methods for reducing the dislocation density of nitride epitaxial films are provided. Specifically, an in-situ etch treatment is provided to preferentially etch the dislocations of the nitride epitaxial layer to prevent threading of the dislocations through the nitride epitaxial layer. Subsequent to etching of the dislocations, an epitaxial layer overgrowth is performed. In certain embodiments, the etching of the dislocations occurs simultaneously with growth of the epitaxial layer. In other embodiments, a dielectric mask is deposited within the etch pits formed at the dislocations prior to the epitaxial layer overgrowth.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: July 14, 2009
    Assignee: Applied Materials, Inc.
    Inventors: David Bour, Sandeep Nijhawan, Jacob Smith, Lori Washington
  • Publication number: 20090149008
    Abstract: Embodiments of the invention generally relate to methods for forming Group III-V materials by a hydride vapor phase epitaxy (HVPE) process. In one embodiment, a method for forming a gallium nitride material on a substrate within a processing chamber is provided which includes heating a metallic source to form a heated metallic source, wherein the heated metallic source contains gallium, aluminum, indium, alloys thereof, or combinations thereof, exposing the heated metallic source to chlorine gas while forming a metallic chloride gas, exposing the substrate to the metallic chloride gas and a nitrogen precursor gas while forming a metal nitride layer on the substrate during the HVPE process. The method further provides exposing the substrate to chlorine gas during a pretreatment process prior to forming the metal nitride layer. In one example, the exhaust conduit of the processing chamber is heated to about 200° C. or less during the pretreatment process.
    Type: Application
    Filed: October 2, 2008
    Publication date: June 11, 2009
    Inventors: Olga Kryliouk, Sandeep Nijhawan, Yuriy Melnik, Lori D. Washington, Jacob W. Grayson, Sung W. Jun, Jie Su
  • Publication number: 20090136652
    Abstract: A method and apparatus that may be utilized in deposition processes, such as hydride vapor phase epitaxial (HVPE) deposition of metal nitride films, are provided. A first set of passages may introduce a metal containing precursor gas. A second set of passages may provide a nitrogen-containing precursor gas. The first and second sets of passages may be interspersed in an effort to separate the metal containing precursor gas and nitrogen-containing precursor gas until they reach a substrate. An inert gas may also be flowed down through the passages to help keep separation and limit reaction at or near the passages, thereby preventing unwanted deposition on the passages.
    Type: Application
    Filed: October 26, 2007
    Publication date: May 28, 2009
    Inventors: Lori D. Washington, Olga Kryliouk, Yuriy Melnik, Jacob Grayson, Sandeep Nijhawan
  • Patent number: 7534714
    Abstract: Methods are disclosed of fabricating a compound nitride semiconductor structure. A substrate is disposed over a susceptor in a processing chamber, with the susceptor in thermal communication with the substrate. A group-III precursor and a nitrogen precursor are flowed into the processing chamber. The susceptor is heated with a nonuniform temperature profile to heat the substrate. A nitride layer is deposited over the heated substrate with a thermal chemical vapor deposition process within the processing chamber using the group-III precursor and the nitrogen precursor.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: May 19, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Lori Washington, Sandeep Nijhawan, David Carlson
  • Publication number: 20090095221
    Abstract: A method and apparatus that may be utilized for chemical vapor deposition and/or hydride vapor phase epitaxial (HVPE) deposition are provided. In one embodiment, a metal organic chemical vapor deposition (MOCVD) process is used to deposit a Group III-nitride film on a plurality of substrates. A Group III precursor, such as trimethyl gallium, trimethyl aluminum or trimethyl indium and a nitrogen-containing precursor, such as ammonia, are separately delivered to a plurality of concentric gas injection ports. The precursor gases are injected into mixing zones where the gases are mixed before entering a processing volume containing the substrates.
    Type: Application
    Filed: October 16, 2007
    Publication date: April 16, 2009
    Inventors: Alexander TAM, Ronald STEVENS, Jacob GRAYSON, David BOUR, Sandeep NIJHAWAN
  • Publication number: 20090098276
    Abstract: A method and apparatus that may be utilized for chemical vapor deposition and/or hydride vapor phase epitaxial (HVPE) deposition are provided. In one embodiment, a metal organic chemical vapor deposition (MOCVD) process is used to deposit a Group III-nitride film on a plurality of substrates. A Group III precursor, such as trimethyl gallium, trimethyl aluminum or trimethyl indium and a nitrogen-containing precursor, such as ammonia, are delivered to a plurality of straight channels which isolate the precursor gases. The precursor gases are injected into mixing channels where the gases are mixed before entering a processing volume containing the substrates. Heat exchanging channels are provided for temperature control of the mixing channels to prevent undesirable condensation and reaction of the precursors.
    Type: Application
    Filed: October 16, 2007
    Publication date: April 16, 2009
    Inventors: Brian H. BURROWS, Alexander Tam, Ronald Stevens, Kenric T. Choi, James D. Felsch, Jacob Grayson, Sumedh Acharya, Sandeep Nijhawan, Lori D. Washington, Nyi O. Myo
  • Publication number: 20090094085
    Abstract: Methods and apparatus for scheduling delivery of an order via a wide area network. A delivery interface is generated in which a plurality of delivery windows are presented. The delivery interface is transmitted to a remote platform via the wide area network. In response to selection of a first one of the plurality of delivery windows, it is determined whether the order may be delivered in the first delivery window. Where it is determined that the order may be delivered in the first delivery window, delivery of the order is scheduled in the first delivery window.
    Type: Application
    Filed: October 9, 2008
    Publication date: April 9, 2009
    Inventors: Christopher Angel Kantarjiev, Sandeep Nijhawan, Justin Miller
  • Patent number: 7470599
    Abstract: Methods are provided of fabricating a nitride semiconductor structure. A group-III precursor and a nitrogen precursor are flowed into a processing chamber to deposit a first layer over one side of the substrate with a thermal chemical-vapor-deposition process. A second layer is similarly deposited over an opposite side of the substrate using the group-III precursor and the nitrogen precursor. The substrate is cooled after depositing the first and second layers without substantially deforming a shape of the substrate.
    Type: Grant
    Filed: April 14, 2006
    Date of Patent: December 30, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Sandeep Nijhawan, David Eaglesham, Lori Washington, David Bour, Jacob Smith
  • Publication number: 20080314317
    Abstract: A method and apparatus that may be utilized in deposition processes, such as hydride vapor phase epitaxial (HVPE) deposition of metal nitride films, are provided. A first set of passages may introduce a metal containing precursor gas. A second set of passages may provide a nitrogen-containing precursor gas. The first and second sets of passages may be interspersed in an effort to separate the metal containing precursor gas and nitrogen-containing precursor gas until they reach a substrate. An inert gas may also be flowed down through the passages to help keep separation and limit reaction at or near the passages, thereby preventing unwanted deposition on the passages.
    Type: Application
    Filed: October 26, 2007
    Publication date: December 25, 2008
    Inventors: BRIAN H. BURROWS, Olga Kryliouk, Yuriy Melnik, Jacob Grayson, Sandeep Nijhawan, Ronald Stevens, Sumedh Acharya
  • Publication number: 20080314311
    Abstract: A method and apparatus that may be utilized in deposition processes, such as hydride vapor phase epitaxial (HVPE) deposition of metal nitride films, are provided. A first set of passages may introduce a metal containing precursor gas. A second set of passages may provide a nitrogen-containing precursor gas. The first and second sets of passages may be interspersed in an effort to separate the metal containing precursor gas and nitrogen-containing precursor gas until they reach a substrate. An inert gas may also be flowed down through the passages to help keep separation and limit reaction at or near the passages, thereby preventing unwanted deposition on the passages.
    Type: Application
    Filed: June 24, 2007
    Publication date: December 25, 2008
    Inventors: Brian H. Burrows, Alexander Tam, Ronald Stevens, Jacob Grayson, Kenric T. Choi, Sumedh Acharya, Sandeep Nijhawan, Olga Kryliouk, Yuriy Melnik
  • Publication number: 20080296594
    Abstract: Nitride optoelectronic devices that have asymmetric double-sided structures and methods fabricating such structures are disclosed. Two n-type III-N layers are formed simultaneously over opposite sides of a substrate with substantially the same composition. Thereafter, a p-type III-N active layer is formed over one of the n-type III-N layers but not over the other.
    Type: Application
    Filed: July 15, 2008
    Publication date: December 4, 2008
    Applicant: Applied Materials, Inc.
    Inventors: David Bour, Jacob Smith, Jie Su, Sandeep Nijhawan
  • Publication number: 20080289575
    Abstract: An improved method and apparatus for depositing a Group III-V for a hydride vapor phase epitaxy (HVPE) process are provided. In one embodiment, an apparatus for a hydride vapor phase epitaxy process may include an elongated body having a trough defined between a first and a second wall, a channel formed in the first wall configured to provide a gas to the trough, and an inlet port formed in the body coupled to the channel. In another embodiment, a method for a hydride vapor phase epitaxy process may include providing Group III metal liquid precursor in a container disposed in a chamber, flowing a halogen containing gas across the container to form a Group III metal halide vapor to a reacting zone in the chamber, and mixing the Group III metal halide vapor with a Group V gas supplied in the chamber in the reacting zone.
    Type: Application
    Filed: May 24, 2007
    Publication date: November 27, 2008
    Inventors: Brian H. Burrows, Nyi O. Myo, Ronald Stevens, Jacob Grayson, Lori D. Washington, Sandeep Nijhawan
  • Publication number: 20080276860
    Abstract: A method and apparatus for hydride vapor phase epitaxial (HVPE) deposition is disclosed. In the HVPE process, a hydride gas flows over a metal source to react with the metal source, which then reacts at the surface of a substrate to deposit a metal nitride layer. The metal source comprises gallium, aluminum, and/or indium. The hydride gas is evenly provided over the metal source to increase efficiency of hydride-metal source reaction. An exhaust positioned diametrically across the chamber from the metal source creates a cross flow of the hydride-metal source product and nitrogen precursor across the chamber tangential to the substrate. A purge gas flowing perpendicular to the cross flow directs the hydride-metal source product and nitrogen precursor to remain as close to the substrate as possible.
    Type: Application
    Filed: May 10, 2007
    Publication date: November 13, 2008
    Inventors: BRIAN H. BURROWS, Jacob Grayson, Nyi O. Myo, Ronald Stevens, Kenric T. Choi, Sumedh Acharya, Sandeep Nijhawan, Lori D. Washington
  • Patent number: 7437305
    Abstract: Methods and apparatus for scheduling delivery of an order via a wide area network. A delivery interface is generated in which a plurality of delivery windows are presented. The delivery interface is transmitted to a remote platform via the wide area network. In response to selection of a first one of the plurality of delivery windows, it is determined whether the order may be delivered in the first delivery window. Where it is determined that the order may be delivered in the first delivery window, delivery of the order is scheduled in the first delivery window.
    Type: Grant
    Filed: May 10, 2000
    Date of Patent: October 14, 2008
    Inventors: Christopher Angel Kantarjiev, Sandeep Nijhawan, Justin Miller
  • Publication number: 20080216073
    Abstract: Executing programs coded in an instruction set of a first computer on a computer of a second, different architecture. An operating system maintains an association between each one of a set of concurrent threads and a set of computer resources of the thread's context. Without modifying a pre-existing operating system of the computer, an entry exception is establishing to be raised on each entry to the operating system at a specified entry point or on a specified condition. The entry exception has an associated entry handler programmed to save a context of an interrupted thread and modify the thread context before delivering the modified context to the operating system. A resumption exception is established to be raised on each resumption from the operating system complementary to one of the specified entries. The resumption exception has an associated exit handler programmed to restore the context saved by a corresponding execution of the entry handler.
    Type: Application
    Filed: September 25, 2007
    Publication date: September 4, 2008
    Inventors: John S. Yates, Matthew F. Storch, Sandeep Nijhawan, Dale R. Jurich, Korbin S. Van Dyke
  • Patent number: 7399653
    Abstract: Nitride optoelectronic devices that have asymmetric double-sided structures and methods fabricating such structures are disclosed. Two n-type III-N layers are formed simultaneously over opposite sides of a substrate with substantially the same composition. Thereafter, a p-type III-N active layer is formed over one of the n-type III-N layers but not over the other.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: July 15, 2008
    Assignee: Applied Materials, Inc.
    Inventors: David Bour, Jacob Smith, Jie Su, Sandeep Nijhawan
  • Publication number: 20080124453
    Abstract: Systems and methods for in-situ monitoring of the formation of parasitic particles during the deposition of a III-V nitride film with, e.g., metal-organic chemical vapor deposition (MOCVD) are described. In accordance with certain embodiments, at least one light source capable of generating a light beam at a desired wavelength is positioned relative to a reaction chamber so as to pass a light beam into the reaction chamber. Multiple optical detectors capable of detecting light from the beam are positioned relative to the reaction chamber to monitor desired reaction and growth conditions. More particularly, a first optical detector is positioned so as to detect light reflected from a deposition surface within the reaction chamber so as to monitor growth rate and/or composition of a film during deposition.
    Type: Application
    Filed: November 28, 2006
    Publication date: May 29, 2008
    Applicant: Applied Matrials, Inc.
    Inventors: DAVID BOUR, Ronald P. Stevens, Jacob W. Smith, Sandeep Nijhawan
  • Publication number: 20080124463
    Abstract: A gaseous mixture is deposited onto a substrate surface using a showerhead. A first plenum of the showerhead has a plurality of channels fluidicly coupled with an interior of a processing chamber. A second plenum gas flows through a plurality of tubes extending from a second plenum of the showerhead through the channels into the interior of the processing chamber. The diameter of the tubes is smaller than the diameter of the channels such that a first plenum gas flows into the interior of the processing chamber through a space defined between the outer surface of the tubes and the surface of the channels. The length and diameter of the tubes determine the level of distribution and the molar ratio of the first gas and the second gas in the gaseous mixture that is deposited on the surface of the substrate.
    Type: Application
    Filed: November 28, 2006
    Publication date: May 29, 2008
    Applicant: Applied Materials, Inc.
    Inventors: David Bour, Lori Washington, Sandeep Nijhawan, Ronald Stevens, Jacob Smith, Alexander Tam, Nyi O. Myo, Steve Park, Rosemary Twist, Garry Kwong, Jie Su
  • Publication number: 20080124817
    Abstract: Methods and systems are provided of fabricating a compound nitride semiconductor structure. A substrate is disposed within a processing chamber into which a group-III precursor and a nitrogen precursor are flowed. A layer is deposited over the substrate with a thermal chemical-vapor-deposition process using the precursors. The substrate is transferred to a transfer chamber where a temperature and a curvature of the layer are measured. The substrate is then transferred to a second processing chamber where a second layer is deposited.
    Type: Application
    Filed: August 23, 2006
    Publication date: May 29, 2008
    Applicant: Applied Materials, Inc.
    Inventors: David Bour, Sandeep Nijhawan, Lori D. Washington, Jacob W. Smith
  • Patent number: 7374960
    Abstract: Methods and systems are provided of fabricating a compound nitride semiconductor structure. A substrate is disposed within a processing chamber into which a group-III precursor and a nitrogen precursor are flowed. A layer is deposited over the substrate with a thermal chemical-vapor-deposition process using the precursors. The substrate is transferred to a transfer chamber where a temperature and a curvature of the layer are measured. The substrate is then transferred to a second processing chamber where a second layer is deposited.
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: May 20, 2008
    Assignee: Applied Materials, Inc.
    Inventors: David Bour, Sandeep Nijhawan, Lori D. Washington, Jacob W. Smith