Patents by Inventor Sandrine CHARUE-BAKKER

Sandrine CHARUE-BAKKER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11955482
    Abstract: Integrated circuit structures having high phosphorous dopant concentrations are described. In an example, an integrated circuit structure includes a fin having a lower fin portion and an upper fin portion. A gate stack is over the upper fin portion of the fin, the gate stack having a first side opposite a second side. A first source or drain structure includes an epitaxial structure embedded in the fin at the first side of the gate stack. A second source or drain structure includes an epitaxial structure embedded in the fin at the second side of the gate stack. Each of the epitaxial structures of the first and second source or drain structures includes silicon and phosphorous, the phosphorous having an atomic concentration in a core region of the silicon greater than an atomic concentration in a peripheral region of the silicon.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: April 9, 2024
    Assignee: Intel Corporation
    Inventors: Robert Ehlert, Timothy Jen, Alexander Badmaev, Shridhar Hegde, Sandrine Charue-Bakker
  • Patent number: 11581313
    Abstract: Disclosed herein are IC structures, packages, and devices that include III-N transistors integrated on the same support structure as non-III-N transistors (e.g., Si-based transistors), using semiconductor regrowth. In one aspect, a non-III-N transistor may be integrated with an III-N transistor by depositing a III-N material, forming an opening in the III-N material, and epitaxially growing within the opening a semiconductor material other than the III-N material. Since the III-N material may serve as a foundation for forming III-N transistors, while the non-III-N material may serve as a foundation for forming non-III-N transistors, such an approach advantageously enables implementation of both types of transistors on a single support structure. Proposed integration may reduce costs and improve performance by enabling integrated digital logic solutions for III-N transistors and by reducing losses incurred when power is routed off chip in a multi-chip package.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: February 14, 2023
    Assignee: Intel Corporation
    Inventors: Sansaptak Dasgupta, Johann Christian Rode, Han Wui Then, Marko Radosavljevic, Paul B. Fischer, Nidhi Nidhi, Rahul Ramaswamy, Sandrine Charue-Bakker, Walid M. Hafez
  • Publication number: 20220093790
    Abstract: Co-integrated gallium nitride (GaN) complementary metal oxide semiconductor (CMOS) integrated circuit technology is described. In an example, a semiconductor structure includes a silicon (111) substrate having a first region and a second region. A structure including gallium and nitrogen is on the first region of the silicon (111) substrate, the structure including gallium and nitrogen having a top surface. A structure including germanium is on the second region of the silicon (111) substrate, the structure including germanium having a top surface co-planar with the top surface of the structure including gallium and nitrogen. A dielectric spacer is laterally between and in contact with the structure including gallium and nitrogen and the structure including germanium, the dielectric spacer on the silicon (111) substrate.
    Type: Application
    Filed: September 23, 2020
    Publication date: March 24, 2022
    Inventors: Glenn A. GLASS, Anand S. MURTHY, Robert EHLERT, Han Wui THEN, Marko RADOSAVLJEVIC, Nicole K. THOMAS, Sandrine CHARUE-BAKKER
  • Publication number: 20210399119
    Abstract: Embodiments disclosed herein comprise a high electron mobility transistor (HEMT). In an embodiment, the HEMT comprises a heterojunction channel that includes a first semiconductor layer and a second semiconductor layer over the first semiconductor layer. In an embodiment a first interface layer is between the first semiconductor layer and the second semiconductor layer, and a second interface layer is over the first interface layer. In an embodiment, the HEMT further comprises a source contact, a drain contact, and a gate contact between the source contact and the drain contact.
    Type: Application
    Filed: June 23, 2020
    Publication date: December 23, 2021
    Inventors: Suresh VISHWANATH, Roza KOTLYAR, Han Wui THEN, Robert EHLERT, Glenn A. GLASS, Anand S. MURTHY, Sandrine CHARUE-BAKKER
  • Publication number: 20210358908
    Abstract: Integrated circuit structures having high phosphorous dopant concentrations are described. In an example, an integrated circuit structure includes a fin having a lower fin portion and an upper fin portion. A gate stack is over the upper fin portion of the fin, the gate stack having a first side opposite a second side. A first source or drain structure includes an epitaxial structure embedded in the fin at the first side of the gate stack. A second source or drain structure includes an epitaxial structure embedded in the fin at the second side of the gate stack. Each of the epitaxial structures of the first and second source or drain structures includes silicon and phosphorous, the phosphorous having an atomic concentration in a core region of the silicon greater than an atomic concentration in a peripheral region of the silicon.
    Type: Application
    Filed: May 18, 2020
    Publication date: November 18, 2021
    Inventors: Robert EHLERT, Timothy JEN, Alexander BADMAEV, Shridhar HEGDE, Sandrine CHARUE-BAKKER
  • Publication number: 20200273860
    Abstract: Disclosed herein are IC structures, packages, and devices that include III-N transistors integrated on the same support structure as non-III-N transistors (e.g., Si-based transistors), using semiconductor regrowth. In one aspect, a non-III-N transistor may be integrated with an III-N transistor by depositing a III-N material, forming an opening in the III-N material, and epitaxially growing within the opening a semiconductor material other than the III-N material. Since the III-N material may serve as a foundation for forming III-N transistors, while the non-III-N material may serve as a foundation for forming non-III-N transistors, such an approach advantageously enables implementation of both types of transistors on a single support structure. Proposed integration may reduce costs and improve performance by enabling integrated digital logic solutions for III-N transistors and by reducing losses incurred when power is routed off chip in a multi-chip package.
    Type: Application
    Filed: February 22, 2019
    Publication date: August 27, 2020
    Applicant: Intel Corporation
    Inventors: Sansaptak Dasgupta, Johann Christian Rode, Han Wui Then, Marko Radosavljevic, Paul B. Fischer, Nidhi Nidhi, Rahul Ramaswamy, Sandrine Charue-Bakker, Walid M. Hafez
  • Publication number: 20200194577
    Abstract: An HEMT semiconductor structure is disclosed. The semiconductor structure includes a substrate, a GaN layer above the substrate, a first TDD reducing structure above the substrate and a polarization layer above the GaN layer.
    Type: Application
    Filed: December 13, 2018
    Publication date: June 18, 2020
    Inventors: Glenn GLASS, Sansaptak DASGUPTA, Han Wui THEN, Marko RADOSAVLJEVIC, Paul FISCHER, Anand MURTHY, Alexander BADMAEV, Michael S. BEUMER, Sandrine CHARUE-BAKKER