Patents by Inventor Santhisagar Vaddiraju

Santhisagar Vaddiraju has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230404446
    Abstract: A biocompatible medical device may include an electrochemical sensor including a common reference electrode; at least one counter electrode; and a work electrode platform comprising a plurality of respective work electrodes, each respective work electrode electrically coupled to the common reference electrode and comprising a respective reagent substrate configured to react with a respective analyte to produce a respective signal indicative of a concentration of the respective analyte; and processing circuitry operatively coupled to the electrochemical sensor, and configured to receive from the electrochemical sensor a plurality of signals from the plurality of respective work electrodes; identify the respective signal corresponding to a respective selected work electrode; and process the identified signal to determine the concentration of the respective analyte associated with the respective selected work electrode.
    Type: Application
    Filed: September 1, 2023
    Publication date: December 21, 2023
    Inventors: Daniel Hahn, Mohsen Askarinya, James K. Carney, Patrick W. Kinzie, Jennifer Lorenz Marckmann, Randal C. Schulhauser, Santhisagar Vaddiraju, Akhil Srinivasan, David Probst, Alejo Chavez Gaxiola
  • Patent number: 11744492
    Abstract: A biocompatible medical device may include an electrochemical sensor including a common reference electrode; at least one counter electrode; and a work electrode platform comprising a plurality of respective work electrodes, each respective work electrode electrically coupled to the common reference electrode and comprising a respective reagent substrate configured to react with a respective analyte to produce a respective signal indicative of a concentration of the respective analyte; and processing circuitry operatively coupled to the electrochemical sensor, and configured to receive from the electrochemical sensor a plurality of signals from the plurality of respective work electrodes; identify the respective signal corresponding to a respective selected work electrode; and process the identified signal to determine the concentration of the respective analyte associated with the respective selected work electrode.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: September 5, 2023
    Assignee: Medtronic, Inc.
    Inventors: Daniel Hahn, Mohsen Askarinya, James K. Carney, Patrick W. Kinzie, Jennifer Lorenz Marckmann, Randal C. Schulhauser, Santhisagar Vaddiraju, Akhil Srinivasan, David Probst, Alejo Chavez Gaxiola
  • Publication number: 20230093665
    Abstract: Analyte sensors and methods for fabricating analyte sensors in a roll-to-roll process are provided. In an exemplary embodiment, a method includes providing a roll of a polyester substrate having a first side coated with a layer of platinum, wherein the platinum is in direct contact with the polyester substrate; patterning the layer of platinum to form electrodes; punching the polyester substrate to form ribbons, wherein each ribbon is connected to a remaining polyester substrate web by a tab, and wherein each sensor includes an electrode; after punching the polyester substrate to form ribbons, depositing an enzyme layer over the portions of the working electrodes and coating the working electrodes with a glucose limiting membrane; after depositing the enzyme layer over the portions of the working electrodes and coating the working electrodes with a glucose limiting membrane, singulating the individual sensors by completely separating each individual sensor from the polyester substrate.
    Type: Application
    Filed: November 14, 2022
    Publication date: March 23, 2023
    Inventors: Santhisagar Vaddiraju, Dennis Slomski
  • Publication number: 20230074154
    Abstract: A physiological characteristic monitoring system includes a wearable attachment device, an electronic device, and a physiological characteristic sensor (e.g., a glucose sensor) including a portion that is insertable into subcutaneous tissue of a user to generate sensor signals indicating a physiological characteristic of the user. The electronic device includes a first connector configured to detachably couple to the physiological characteristic sensor to receive the sensor signals in a first configuration of the electronic device, a second connector configured to detachably couple to the wearable attachment device in a second configuration of the electronic device, a controller configured to determine the physiological characteristic of the user based on the sensor signals, and a display configured to display the physiological characteristic of the user.
    Type: Application
    Filed: November 16, 2022
    Publication date: March 9, 2023
    Inventors: Santhisagar Vaddiraju, Bejan M. Darbandi, Nicholas S. Mairs, Brian Ross
  • Publication number: 20230063689
    Abstract: An embodiment of a sensor device includes a base substrate, a circuit pattern formed overlying the interior surface of the substrate, a physiological characteristic sensor element on the exterior surface of the substrate, conductive plug elements located in vias formed through the substrate, each conductive plug element having one end coupled to a sensor electrode, and having another end coupled to the circuit pattern, a multilayer component stack carried on the substrate and connected to the circuit pattern, the stack including features and components to provide processing and wireless communication functionality for sensor data obtained in association with operation of the sensor device, and an enclosure structure coupled to the substrate to enclose the interior surface of the substrate, the circuit pattern, and the stack.
    Type: Application
    Filed: October 19, 2022
    Publication date: March 2, 2023
    Inventors: Daniel Hahn, David L. Probst, Randal C. Schulhauser, Mohsen Askarinya, Patrick W. Kinzie, Thomas P. Miltich, Mark D. Breyen, Santhisagar Vaddiraju
  • Patent number: 11540750
    Abstract: A physiological characteristic monitoring system includes a physiological characteristic sensor that observes a physiological characteristic and generates sensor signals based on the observation. The physiological characteristic sensor includes a sensor connector. The physiological characteristic monitoring system includes a wearable device to be worn by a user in a first configuration and having a connector to couple to the sensor connector in a second configuration. The wearable device includes a controller that receives the sensor signals from the physiological characteristic sensor in the second configuration and determines a current value of the physiological characteristic based on the sensor signals.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: January 3, 2023
    Assignee: MEDTRONIC MINIMED, INC
    Inventors: Santhisagar Vaddiraju, Bejan M. Darbandi, Nicholas S. Mairs, Brian Ross
  • Patent number: 11512384
    Abstract: Analyte sensors and methods for fabricating analyte sensors are provided. In an exemplary embodiment, a method for fabricating a planar flexible analyte sensor includes sputtering platinum onto a polyester base layer to form a layer of platinum. The method includes patterning the layer of platinum to form working electrodes and additional electrodes. Further, the method includes forming an insulating dielectric layer over the base layer, wherein the insulating dielectric layer is formed with openings exposing portions of the working electrodes and portions of the additional electrodes. Also, the method includes partially singulating individual sensors from the base layer, wherein each individual sensor is connected to the base layer by a tab. The method further includes depositing an enzyme layer over the exposed portions of the working electrodes and coating the working electrodes with a glucose limiting membrane.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: November 29, 2022
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Santhisagar Vaddiraju, Dennis Slomski
  • Patent number: 11490811
    Abstract: An embodiment of a sensor device includes a base substrate, a circuit pattern formed overlying the interior surface of the substrate, a physiological characteristic sensor element on the exterior surface of the substrate, conductive plug elements located in vias formed through the substrate, each conductive plug element having one end coupled to a sensor electrode, and having another end coupled to the circuit pattern, a multilayer component stack carried on the substrate and connected to the circuit pattern, the stack including features and components to provide processing and wireless communication functionality for sensor data obtained in association with operation of the sensor device, and an enclosure structure coupled to the substrate to enclose the interior surface of the substrate, the circuit pattern, and the stack.
    Type: Grant
    Filed: December 4, 2020
    Date of Patent: November 8, 2022
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Daniel Hahn, David L. Probst, Randal C. Schulhauser, Mohsen Askarinya, Patrick W. Kinzie, Thomas P. Miltich, Mark D. Breyen, Santhisagar Vaddiraju
  • Publication number: 20220296131
    Abstract: The disclosed techniques include applying, using a voltage controller, multiple voltage pulses to a working electrode of a two-electrode sensor probe, and measuring, using a current sensor, the current response to the applied multiple voltage pulses. The techniques also include analyzing, using a processor, the measured current response, and calibrating, using a processor, the current sensor on the basis of the analyzed measured current response. The techniques further include determining, using a processor, a glucose concentration value on the basis of the calibrated current sensor, and transmitting, using a transmitter, the determined glucose concentration value to a receiver.
    Type: Application
    Filed: June 9, 2022
    Publication date: September 22, 2022
    Inventors: Santhisagar Vaddiraju, Shawn C. Kelley
  • Patent number: 11382541
    Abstract: Disclosed herein are sensors for sensing analyte concentration values, and methods of operating such sensors. The sensors include a sensor probe comprising two electrodes; a voltage controller operably connected to the two electrodes of the probe, the voltage controller operable to apply multiple voltage pulses to one of the electrodes; a current sensor operable to measure a current response to the multiple voltage pulses; and a processor module operably connected to the current sensor, the processor module operable to calibrate the current sensor on the basis of the current response.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: July 12, 2022
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Santhisagar Vaddiraju, Shawn C. Kelley
  • Patent number: 11246518
    Abstract: Disclosed herein is a sensor comprising a conduit; the conduit comprising an organic polymer; a working electrode; the working electrode being etched and decorated with a nanostructured material; a reference electrode; and a counter electrode; the working electrode, the reference electrode and the counter electrode being disposed in the conduit; the working electrode, the reference electrode and the counter electrode being separated from each other by an electrically insulating material; and wherein a cross-sectional area of the conduit that comprises a section of the working electrode, a section of the reference electrode and a section of the counter electrode is exposed to detect analytes.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: February 15, 2022
    Assignee: UNIVERSITY OF CONNECTICUT SCH OF MED/DNT
    Inventors: Liangliang Qiang, Santhisagar Vaddiraju, Fotios Papadimitrakopoulos
  • Publication number: 20210106226
    Abstract: An embodiment of a sensor device includes a base substrate, a circuit pattern formed overlying the interior surface of the substrate, a physiological characteristic sensor element on the exterior surface of the substrate, conductive plug elements located in vias formed through the substrate, each conductive plug element having one end coupled to a sensor electrode, and having another end coupled to the circuit pattern, a multilayer component stack carried on the substrate and connected to the circuit pattern, the stack including features and components to provide processing and wireless communication functionality for sensor data obtained in association with operation of the sensor device, and an enclosure structure coupled to the substrate to enclose the interior surface of the substrate, the circuit pattern, and the stack.
    Type: Application
    Filed: December 4, 2020
    Publication date: April 15, 2021
    Inventors: Daniel Hahn, David L. Probst, Randal C. Schulhauser, Mohsen Askarinya, Patrick W. Kinzie, Thomas P. Miltich, Mark D. Breyen, Santhisagar Vaddiraju
  • Patent number: 10874300
    Abstract: An embodiment of a sensor device includes a base substrate, a circuit pattern formed overlying the interior surface of the substrate, a physiological characteristic sensor element on the exterior surface of the substrate, conductive plug elements located in vias formed through the substrate, each conductive plug element having one end coupled to a sensor electrode, and having another end coupled to the circuit pattern, a multilayer component stack carried on the substrate and connected to the circuit pattern, the stack including features and components to provide processing and wireless communication functionality for sensor data obtained in association with operation of the sensor device, and an enclosure structure coupled to the substrate to enclose the interior surface of the substrate, the circuit pattern, and the stack.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: December 29, 2020
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Daniel Hahn, David Probst, Randal Schulhauser, Mohsen Askarinya, Patrick W. Kinzie, Thomas P. Miltich, Mark D. Breyen, Santhisagar Vaddiraju
  • Patent number: 10852268
    Abstract: An electrochemical sensor may include a common reference electrode, at least one counter electrode, and a work electrode platform including a plurality of respective work electrodes. Each respective work electrode of the plurality of respective work electrodes may be electrically coupled to the common reference electrode and include a respective reagent substrate configured to react with a respective analyte to produce a signal indicative of a concentration of the respective analyte.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: December 1, 2020
    Assignee: Medtronic, Inc.
    Inventors: Daniel Hahn, Mohsen Askarinya, James K. Carney, Patrick W. Kinzie, Jennifer Lorenz Marckmann, Randal C. Schulhauser, Santhisagar Vaddiraju, Akhil Srinivasan, David Probst, Alejo Chavez Gaxiola
  • Publication number: 20200196920
    Abstract: A physiological characteristic monitoring system includes a physiological characteristic sensor that observes a physiological characteristic and generates sensor signals based on the observation. The physiological characteristic sensor includes a sensor connector. The physiological characteristic monitoring system includes a wearable device to be worn by a user in a first configuration and having a connector to couple to the sensor connector in a second configuration. The wearable device includes a controller that receives the sensor signals from the physiological characteristic sensor in the second configuration and determines a current value of the physiological characteristic based on the sensor signals.
    Type: Application
    Filed: December 19, 2018
    Publication date: June 25, 2020
    Inventors: Santhisagar Vaddiraju, Bejan M. Darbandi, Nicholas S. Mairs, Brian Ross
  • Publication number: 20200158679
    Abstract: Disclosed herein are biosensors for sensing analyte concentration values, and methods of operating such sensors. The biosensor includes a probe. The probe includes a base substrate and a plurality of electrode sets overlying the base substrate. Each set of the plurality of electrode sets being individually operable for measuring a glucose concentration value when the probe is implanted in a patient. The probe also includes a biodegradable coating covering at least one electrode set of the plurality of electrode sets. The biodegradable coating does not cover at least one other electrode set of the plurality of the electrode sets.
    Type: Application
    Filed: November 16, 2018
    Publication date: May 21, 2020
    Inventors: Santhisagar Vaddiraju, Mark D. Breyen
  • Publication number: 20200155044
    Abstract: Disclosed herein are sensors for sensing analyte concentration values, and methods of operating such sensors. The sensors include a sensor probe comprising two electrodes; a voltage controller operably connected to the two electrodes of the probe, the voltage controller operable to apply multiple voltage pulses to one of the electrodes; a current sensor operable to measure a current response to the multiple voltage pulses; and a processor module operably connected to the current sensor, the processor module operable to calibrate the current sensor on the basis of the current response.
    Type: Application
    Filed: November 16, 2018
    Publication date: May 21, 2020
    Inventors: Santhisagar Vaddiraju, Shawn C. Kelley
  • Publication number: 20200072782
    Abstract: An electrochemical sensor may include a common reference electrode, at least one counter electrode, and a work electrode platform including a plurality of respective work electrodes. Each respective work electrode of the plurality of respective work electrodes may be electrically coupled to the common reference electrode and include a respective reagent substrate configured to react with a respective analyte to produce a signal indicative of a concentration of the respective analyte.
    Type: Application
    Filed: August 29, 2018
    Publication date: March 5, 2020
    Inventors: Daniel Hahn, Mohsen Askarinya, James K. Carney, Patrick W. Kinzie, Jennifer Lorenz Marckmann, Randal C. Schulhauser, Santhisagar Vaddiraju, Akhil Srinivasan, David Probst, Alejo Chavez Gaxiola
  • Publication number: 20200069226
    Abstract: A biocompatible medical device may include an electrochemical sensor including a common reference electrode; at least one counter electrode; and a work electrode platform comprising a plurality of respective work electrodes, each respective work electrode electrically coupled to the common reference electrode and comprising a respective reagent substrate configured to react with a respective analyte to produce a respective signal indicative of a concentration of the respective analyte; and processing circuitry operatively coupled to the electrochemical sensor, and configured to receive from the electrochemical sensor a plurality of signals from the plurality of respective work electrodes; identify the respective signal corresponding to a respective selected work electrode; and process the identified signal to determine the concentration of the respective analyte associated with the respective selected work electrode.
    Type: Application
    Filed: August 29, 2018
    Publication date: March 5, 2020
    Inventors: Daniel Hahn, Mohsen Askarinya, James K. Carney, Patrick W. Kinzie, Jennifer Lorenz Marckmann, Randal C. Schulhauser, Santhisagar Vaddiraju, Akhil Srinivasan, David Probst, Alejo Chavez Gaxiola
  • Publication number: 20190313956
    Abstract: Disclosed herein is a sensor comprising a conduit; the conduit comprising an organic polymer; a working electrode; the working electrode being etched and decorated with a nanostructured material; a reference electrode; and a counter electrode; the working electrode, the reference electrode and the counter electrode being disposed in the conduit; the working electrode, the reference electrode and the counter electrode being separated from each other by an electrically insulating material; and wherein a cross-sectional area of the conduit that comprises a section of the working electrode, a section of the reference electrode and a section of the counter electrode is exposed to detect analytes.
    Type: Application
    Filed: June 3, 2019
    Publication date: October 17, 2019
    Inventors: Liangliang Qiang, Santhisagar Vaddiraju, Fotios Papadimitrakopoulos