Patents by Inventor Santi Kulprathipanja

Santi Kulprathipanja has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150148577
    Abstract: A process is presented for the separation of iso-olefins from a hydrocarbon mixture comprising paraffins and olefins. The process includes an adsorption separation system, wherein the adsorbent is selected according to the properties of the material that is desired to be adsorbed. The process also includes a selection of a desorbent, which can comprise a mixture, to provide for an enhanced recovery of the adsorbed material and a separation of the iso-olefins from paraffins.
    Type: Application
    Filed: November 26, 2013
    Publication date: May 28, 2015
    Applicant: UOP LLC
    Inventors: Santi Kulprathipanja, Stephen W. Sohn
  • Publication number: 20150148576
    Abstract: A process is presented for the separation of iso-olefins from a hydrocarbon mixture comprising paraffins and olefins. The process includes an adsorption separation system, wherein the adsorbent is selected according to the properties of the material that is desired to be adsorbed. The process also includes a selection of a desorbent, which can comprise a mixture, to provide for an enhanced recovery of the adsorbed material and a separation of the iso-olefins from paraffins.
    Type: Application
    Filed: November 26, 2013
    Publication date: May 28, 2015
    Applicant: UOP LLC
    Inventors: Santi Kulprathipanja, Stephen W. Sohn
  • Publication number: 20150105600
    Abstract: Embodiments of adsorbents for separating para-xylene from a mixture of C8 alkyl aromatic hydrocarbons, methods for making such adsorbents, and methods for separating para-xylene using such adsorbents are provided. In one example, an adsorbent comprises a binderless adsorbent. The binderless adsorbent comprises zeolite X and has a K2O/(K2O+BaO+Na2O) molar ratio of from about 0.15 to about 0.4.
    Type: Application
    Filed: October 15, 2013
    Publication date: April 16, 2015
    Applicant: UOP LLC
    Inventors: Patrick C. Whitchurch, Santi Kulprathipanja, Gregory F. Maher
  • Patent number: 8704031
    Abstract: A method for separating a xylene from a feed mixture by contacting the feed mixture with a bed of adsorbent comprising metal organic framework crystals selective to the xylene.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: April 22, 2014
    Assignee: UOP LLC
    Inventors: Santi Kulprathipanja, Richard R. Willis, Annabelle Benin, John J. Low
  • Patent number: 8404917
    Abstract: A mixed matrix adsorbent is found for use in the removal of light alkanes from a gasoline stream. The mixed matrix comprises two adsorbents with one adsorbent having an LTA type structure and the other adsorbent having an MFI structure.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: March 26, 2013
    Assignee: UOP LLC
    Inventors: Santi Kulprathipanja, Stephen W. Sohn
  • Patent number: 8283511
    Abstract: A simulated moving bed adsorptive separation process for preparing the separate feed streams charged to naphtha reforming unit and a steam cracking unit has been developed. The feed stream to the overall unit is passed into the adsorptive separation unit. The desorbent in the adsorptive separation is C12 hydrocarbons. The simulated moving bed adsorptive separation separates the components of the feed stream into a normal paraffin stream, which is charged to the steam cracking process, and non-normal hydrocarbons which are passed into a reforming zone. The desorbent is readily separated from the normal paraffin stream and from the non-normal paraffin stream and the simulated moving bed adsorption zone is operated at an A/Fn ratio of from about 0.90 to about 0.92.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: October 9, 2012
    Assignee: UOP LLC
    Inventors: Stephen W. Sohn, Lynn H. Rice, Santi Kulprathipanja
  • Patent number: 8203028
    Abstract: Processes for olefin/paraffin separation utilizing porous, hydrophobic poly(ether ether ketone) (PEEK) membranes are provided. In accordance with an exemplary embodiment, a process for olefin/paraffin separation comprises providing a porous membrane formed of PEEK polymer functionalized with hydrophobic groups, the porous membrane having a first surface and a second surface. The first surface of the porous membrane is contacted with a feed comprising an olefin and a paraffin and a permeate is caused to flow from the second surface of the porous membrane. The permeate has a concentration of the paraffin that is higher than a concentration of the paraffin of the feed.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: June 19, 2012
    Assignee: UOP LLC
    Inventors: Santi Kulprathipanja, Chunqing Liu
  • Publication number: 20120004491
    Abstract: A method for separating a xylene from a feed mixture by contacting the feed mixture with a bed of adsorbent comprising metal organic framework crystals selective to the xylene.
    Type: Application
    Filed: June 30, 2010
    Publication date: January 5, 2012
    Applicant: UOP LLC
    Inventors: Santi KULPRATHIPANJA, Richard R. Willis, Annabelle Benin, John J. Low
  • Publication number: 20110295052
    Abstract: Processes for olefin/paraffin separation utilizing porous, hydrophobic poly(ether ether ketone) (PEEK) membranes are provided. In accordance with an exemplary embodiment, a process for olefin/paraffin separation comprises providing a porous membrane formed of PEEK polymer functionalized with hydrophobic groups, the porous membrane having a first surface and a second surface. The first surface of the porous membrane is contacted with a feed comprising an olefin and a paraffin and a permeate is caused to flow from the second surface of the porous membrane. The permeate has a concentration of the paraffin that is higher than a concentration of the paraffin of the feed.
    Type: Application
    Filed: May 27, 2010
    Publication date: December 1, 2011
    Applicant: UOP LLC
    Inventors: Santi Kulprathipanja, Chunqing Liu
  • Publication number: 20110245556
    Abstract: A simulated moving bed adsorptive separation process for preparing the separate feed streams charged to naphtha reforming unit and a steam cracking unit has been developed. The feed stream to the overall unit is passed into the adsorptive separation unit. The desorbent in the adsorptive separation is C12 hydrocarbons. The simulated moving bed adsorptive separation separates the components of the feed stream into a normal paraffin stream, which is charged to the steam cracking process, and non-normal hydrocarbons which are passed into a reforming zone. The desorbent is readily separated from the normal paraffin stream and from the non-normal paraffin stream and the simulated moving bed adsorption zone is operated at an A/Fn ratio of from about 0.90 to about 0.92.
    Type: Application
    Filed: March 30, 2010
    Publication date: October 6, 2011
    Applicant: UOP LLC
    Inventors: Stephen W. Sohn, Lynn H. Rice, Santi Kulprathipanja
  • Patent number: 8030399
    Abstract: The present invention is for crosslinked membranes and in particular for crosslinked poly(ethylene oxide)-cellulose acetate-silsesquioxane (PEO-CA-Si) organic-inorganic hybrid membranes and their use in gas separation. These crosslinked PEO-CA-Si membranes were prepared by in-situ sol-gel co-condensation of crosslinkable PEO-organotrialkoxysilane and CA-organotrialkoxysilane polymers in the presence of acetic acid catalyst during the formation of membranes. The crosslinkable PEO- and CA-organotrialkoxysilane polymers were synthesized via the reaction between the hydroxyl groups on PEO (or on CA) and the isocyanate on organotrialkoxysilane to form urethane linkages under mild conditions. The crosslinked PEO-CA-Si membranes exhibited both increased selectivity of CO2/N2 and CO2 permeability as compared to a CA membrane, suggesting that these membranes are very promising for gas separations such as CO2/N2 separation.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: October 4, 2011
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Stephen T. Wilson, Santi Kulprathipanja
  • Patent number: 7943543
    Abstract: New ionic liquid-solid-polymer mixed matrix membranes were proposed for gas separations such as CO2 removal from natural gas or N2. For the new mixed matrix membranes, the solids such as carbon molecular sieves, microporous molecular sieves, MCM-41 type of mesoporous molecular sieves, or polymer of intrinsic microporosity (PIM) are coated (or impregnated) with ionic liquids such as 1-butyl-3-methyl imidazolium bis[trifluoromethylsulfonyl]amide. The ionic liquids coated or impregnated solids are then dispersed in the continuous polymer matrix to form mixed matrix membranes. These hybrid mixed matrix membranes will combine the properties of the continuous polymer phase, the ionic liquids, and the dispersed ionic liquids coated or impregnated solids phase, which will possibly open up new opportunities for gas separation processes such as CO2 separation from natural gas or flue gas.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: May 17, 2011
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Santi Kulprathipanja, Mark E. Schott, Stephen T. Wilson
  • Publication number: 20100326273
    Abstract: This invention discloses a composition of, a method of making, and an application of high plasticization-resistant chemically cross-linked organic-inorganic hybrid membranes such as cross-linked cellulose acetate-cellulose triacetate-polyurethanepropylsilsesquioxane membranes. These cross-linked membranes with covalently interpolymer-chain-connected hybrid networks were prepared via a sol-gel condensation polymerization of cross-linkable organic polymer-organosilicon alkoxide precursor membrane materials. CO2 plasticization tests on these cross-linked membranes demonstrate extremely high CO2 plasticization resistance under CO2 pressure up to 5516 kPa (800 psig). These new cross-linked membranes can be used not only for gas separations such as CO2/CH4 and CO2/N2 separations, O2/N2 separation, olefin/paraffin separations (e.g. propylene/propane separation), iso/normal paraffins separations, but also for liquid separations such as desalination.
    Type: Application
    Filed: September 3, 2010
    Publication date: December 30, 2010
    Applicant: UOP LLC
    Inventors: Chunqing Liu, Stephen T. Wilson, Jeffrey J. Chiou, David A. Lesch, Santi Kulprathipanja
  • Publication number: 20100288122
    Abstract: The present invention is for crosslinked membranes and in particular for crosslinked poly(ethylene oxide)-cellulose acetate-silsesquioxane (PEO-CA-Si) organic-inorganic hybrid membranes and their use in gas separation. These crosslinked PEO-CA-Si membranes were prepared by in-situ sol-gel co-condensation of crosslinkable PEO-organotrialkoxysilane and CA-organotrialkoxysilane polymers in the presence of acetic acid catalyst during the formation of membranes. The crosslinkable PEO- and CA-organotrialkoxysilane polymers were synthesized via the reaction between the hydroxyl groups on PEO (or on CA) and the isocyanate on organotrialkoxysilane to form urethane linkages under mild conditions. The crosslinked PEO-CA-Si membranes exhibited both increased selectivity of CO2/N2 and CO2 permeability as compared to a CA membrane, suggesting that these membranes are very promising for gas separations such as CO2/N2 separation.
    Type: Application
    Filed: July 30, 2010
    Publication date: November 18, 2010
    Applicant: UOP LLC
    Inventors: Chunqing Liu, Stephen T. Wilson, Santi Kulprathipanja
  • Publication number: 20100270234
    Abstract: This invention discloses a composition of, a method of making, and an application of high plasticization-resistant chemically cross-linked organic-inorganic hybrid membranes such as cross-linked cellulose acetate-cellulose triacetate-polyurethanepropylsilsesquioxane membranes. These cross-linked membranes with covalently interpolymer-chain-connected hybrid networks were prepared via a sol-gel condensation polymerization of cross-linkable organic polymer-organosilicon alkoxide precursor membrane materials. CO2 plasticization tests on these cross-linked membranes demonstrate extremely high CO2 plasticization resistance under CO2 pressure up to 5516 kPa (800 psig). These new cross-linked membranes can be used not only for gas separations such as CO2/CH4 and CO2/N2 separations, O2/N2 separation, olefin/paraffin separations (e.g. propylene/propane separation), iso/normal paraffins separations, but also for liquid separations such as desalination.
    Type: Application
    Filed: July 9, 2010
    Publication date: October 28, 2010
    Applicant: UOP LLC
    Inventors: Chunqing Liu, Stephen T. Wilson, Jeffrey J. Chiou, David A. Lesch, Santi Kulprathipanja
  • Patent number: 7820869
    Abstract: Adsorbents and methods for the adsorptive separation of para-xylene from a mixture containing at least one other C8 aromatic hydrocarbon (e.g., a mixture of ortho-xylene, meta-xylene, para-xylene, and ethylbenzene) are described. Suitable binderless adsorbents (e.g., formulated with the substantial absence of an amorphous material that normally reduces selective pore volume), particularly those with a water content from about 3% to about 5.5% by weight, improve capacity and/or mass transfer. These properties are especially advantageous for improving productivity in low temperature, low cycle time adsorptive separation operations in a simulated moving bed mode.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: October 26, 2010
    Assignee: UOP LLC
    Inventors: James W. Priegnitz, Darryl M. Johnson, Sr., Linda Shi Cheng, Scott E. Commissaris, Jack E. Hurst, Michael H. Quick, Santi Kulprathipanja
  • Patent number: 7799225
    Abstract: The present invention relates to a membrane contactor assisted extraction system and method for extracting a single phase species from multi-phase working solutions. More specifically one preferred embodiment of the invention relates to a method and system for membrane contactor assisted water (MCAWE) extraction of hydrogen peroxide (H2O2) from a working solution.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: September 21, 2010
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Seth W. Snyder, Yupo J. Lin, Jamie A. Hestekin, Michael P. Henry, Peter Pujado, Anil Oroskar, Santi Kulprathipanja, Sarabjit Randhava
  • Patent number: 7795483
    Abstract: The present invention is a process for producing phenyl-alkanes by paraffin adsorptive separation followed by paraffin dehydrogenation and then by alkylation of a phenyl compound by a lightly branched olefin. The adsorptive separation step employs a silicalite adsorbent and, as the desorbent, a C5-C8 linear paraffin, a C5-C8 cycloparaffin, a branched paraffin such as isooctane, or mixtures thereof. The effluent of the alkylation zone comprises paraffins that are recycled to the adsorptive separation step or to the dehydrogenation step. This invention is also a process that that sulfonates phenyl-alkanes having lightly branched aliphatic alkyl groups that to produce modified alkylbenzene sulfonates. In addition, this invention is the compositions produced by these processes, which can be used as detergents having improved cleaning effectiveness in hard and/or cold water while also having biodegradability comparable to that of linear alkylbenzene sulfonates, as lubricants, and as lubricant additives.
    Type: Grant
    Filed: September 9, 2003
    Date of Patent: September 14, 2010
    Assignee: UOP LLC
    Inventors: Santi Kulprathipanja, Richard E. Marinangeli, Stephen W. Sohn, Thomas R. Fritsch, R. Joe Lawson
  • Patent number: 7790803
    Abstract: The present invention is for crosslinked membranes and in particular for crosslinked poly(ethylene oxide)-cellulose acetate-silsesquioxane (PEO-CA-Si) organic-inorganic hybrid membranes and their use in gas separation. These crosslinked PEO-CA-Si membranes were prepared by in-situ sol-gel co-condensation of crosslinkable PEO-organotrialkoxysilane and CA-organotrialkoxysilane polymers in the presence of acetic acid catalyst during the formation of membranes. The crosslinkable PEO- and CA-organotrialkoxysilane polymers were synthesized via the reaction between the hydroxyl groups on PEO (or on CA) and the isocyanate on organotrialkoxysilane to form urethane linkages under mild conditions. The crosslinked PEO-CA-Si membranes exhibited both increased selectivity of CO2/N2 and CO2 permeability as compared to a CA membrane, suggesting that these membranes are very promising for gas separations such as CO2/N2 separation.
    Type: Grant
    Filed: June 2, 2008
    Date of Patent: September 7, 2010
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Stephen T. Wilson, Santi Kulprathipanja
  • Patent number: 7728187
    Abstract: Adsorbents and methods for the adsorptive separation of meta-xylene from a mixture containing at least one other C8 aromatic hydrocarbon (e.g., a mixture of ortho-xylene, meta-xylene, para-xylene, and ethylbenzene) are described. Suitable adsorbents comprise sodium zeolite Y having an average crystallite size from about 50 to about 700 nanometers. The adsorbents provide improved separation efficiency, which may be associated with a higher meta-xylene mass transfer rate and/or other beneficial effects. Exemplary desorbents for use in the process may comprise toluene, benzene, or indan.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: June 1, 2010
    Assignee: UOP LLC
    Inventors: Santi Kulprathipanja, Stanley J. Frey, Richard R Willis, Lisa M. Knight