Patents by Inventor Sarah Mayes

Sarah Mayes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11890344
    Abstract: The application of a highly controlled, micron-sized, branched, porous architecture to enhance the handling properties and degradation rate of hydrogels is described in the instant invention. A previously described pattern created through one-step nucleated crystallization in a hydrogel film creates tunable mechanical properties and/or chemical stability for use in tissue engineering applications. The bulk mechanical properties and the degradation rate of the material can be tuned easily by the addition or subtraction of crystalline structure or by the addition and subtraction of backfill material, making this useful for a variety of applications. Relevant mechanical properties that can be tuned through the application of this unique porosity are moduli, elasticity, tensile strength, and compression strength. The method of the present invention can be applied to biopolymers and natural materials as well as synthetic materials.
    Type: Grant
    Filed: February 11, 2022
    Date of Patent: February 6, 2024
    Assignee: Board of Regents, The University of Texas System
    Inventors: Sarah Mayes, Christine Schmidt
  • Patent number: 11857701
    Abstract: A non-synthetic, hydrophilic, biodegradable, biocompatible polysaccharide based non-toxic anti-adhesion hydrogel barrier is disclosed herein. The barrier of the present invention is formed by constructing a unique interpenetrating, crosslinked network with a unique porosity. Furthermore, the barrier of the present invention is comprised of tunable biopolymers for controllable mechanical robustness and degradation. The barrier of the present invention effectively reduces unwanted adhesions using non-synthetic components.
    Type: Grant
    Filed: May 22, 2023
    Date of Patent: January 2, 2024
    Assignee: Board Of Regents, The University Of Texas System
    Inventors: Sarah Mayes, Christine E. Schmidt
  • Publication number: 20230355846
    Abstract: A non-synthetic, hydrophilic, biodegradable, biocompatible polysaccharide based non-toxic anti-adhesion hydrogel barrier is disclosed herein. The barrier of the present invention is formed by constructing a unique interpenetrating, crosslinked network with a unique porosity. Furthermore, the barrier of the present invention is comprised of tunable biopolymers for controllable mechanical robustness and degradation. The barrier of the present invention effectively reduces unwanted adhesions using non-synthetic components.
    Type: Application
    Filed: May 22, 2023
    Publication date: November 9, 2023
    Inventors: Sarah Mayes, Christine E. Schmidt
  • Patent number: 11744926
    Abstract: A non-synthetic, hydrophilic, biodegradable, biocompatible polysaccharide based non-toxic anti-adhesion hydrogel barrier is disclosed herein. The barrier of the present invention is formed by constructing a unique interpenetrating, crosslinked network with a unique porosity. Furthermore, the barrier of the present invention is comprised of tunable biopolymers for controllable mechanical robustness and degradation. The barrier of the present invention effectively reduces unwanted adhesions using non-synthetic components.
    Type: Grant
    Filed: July 7, 2021
    Date of Patent: September 5, 2023
    Assignee: Board Of Regents, The University Of Texas System
    Inventors: Sarah Mayes, Christine E. Schmidt
  • Publication number: 20220160877
    Abstract: The application of a highly controlled, micron-sized, branched, porous architecture to enhance the handling properties and degradation rate of hydrogels is described in the instant invention. A previously described pattern created through one-step nucleated crystallization in a hydrogel film creates tunable mechanical properties and/or chemical stability for use in tissue engineering applications. The bulk mechanical properties and the degradation rate of the material can be tuned easily by the addition or subtraction of crystalline structure or by the addition and subtraction of backfill material, making this useful for a variety of applications. Relevant mechanical properties that can be tuned through the application of this unique porosity are moduli, elasticity, tensile strength, and compression strength. The method of the present invention can be applied to biopolymers and natural materials as well as synthetic materials.
    Type: Application
    Filed: February 11, 2022
    Publication date: May 26, 2022
    Inventors: Sarah Mayes, Christine Schmidt
  • Patent number: 11246937
    Abstract: The application of a highly controlled, micron-sized, branched, porous architecture to enhance the handling properties and degradation rate of hydrogels is described in the instant invention. A previously described pattern created through one-step nucleated crystallization in a hydrogel film creates tunable mechanical properties and/or chemical stability for use in tissue engineering applications. The bulk mechanical properties and the degradation rate of the material can be tuned easily by the addition or subtraction of crystalline structure or by the addition and subtraction of backfill material, making this useful for a variety of applications. Relevant mechanical properties that can be tuned through the application of this unique porosity are moduli, elasticity, tensile strength, and compression strength. The method of the present invention can be applied to biopolymers and natural materials as well as synthetic materials.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: February 15, 2022
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Sarah Mayes, Christine Schmidt
  • Publication number: 20210338906
    Abstract: A non-synthetic, hydrophilic, biodegradable, biocompatible polysaccharide based non-toxic anti-adhesion hydrogel barrier is disclosed herein. The barrier of the present invention is formed by constructing a unique interpenetrating, crosslinked network with a unique porosity. Furthermore, the barrier of the present invention is comprised of tunable biopolymers for controllable mechanical robustness and degradation. The barrier of the present invention effectively reduces unwanted adhesions using non-synthetic components.
    Type: Application
    Filed: July 7, 2021
    Publication date: November 4, 2021
    Inventors: Sarah Mayes, Christine E. Schmidt
  • Patent number: 11058802
    Abstract: A non-synthetic, hydrophilic, biodegradable, biocompatible polysaccharide based non-toxic anti-adhesion hydrogel barrier is disclosed herein. The barrier of the present invention is formed by constructing a unique interpenetrating, crosslinked network with a unique porosity. Furthermore, the barrier of the present invention is comprised of tunable biopolymers for controllable mechanical robustness and degradation. The barrier of the present invention effectively reduces unwanted adhesions using non-synthetic components.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: July 13, 2021
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Sarah Mayes, Christine E. Schmidt
  • Publication number: 20190314558
    Abstract: A non-synthetic, hydrophilic, biodegradable, biocompatible polysaccharide based non-toxic anti-adhesion hydrogel barrier is disclosed herein. The barrier of the present invention is formed by constructing a unique interpenetrating, crosslinked network with a unique porosity. Furthermore, the barrier of the present invention is comprised of tunable biopolymers for controllable mechanical robustness and degradation. The barrier of the present invention effectively reduces unwanted adhesions using non-synthetic components.
    Type: Application
    Filed: May 1, 2019
    Publication date: October 17, 2019
    Inventors: Sarah Mayes, Christine E. Schmidt
  • Publication number: 20190216933
    Abstract: The application of a highly controlled, micron-sized, branched, porous architecture to enhance the handling properties and degradation rate of hydrogels is described in the instant invention. A previously described pattern created through one-step nucleated crystallization in a hydrogel film creates tunable mechanical properties and/or chemical stability for use in tissue engineering applications. The bulk mechanical properties and the degradation rate of the material can be tuned easily by the addition or subtraction of crystalline structure or by the addition and subtraction of backfill material, making this useful for a variety of applications. Relevant mechanical properties that can be tuned through the application of this unique porosity are moduli, elasticity, tensile strength, and compression strength. The method of the present invention can be applied to biopolymers and natural materials as well as synthetic materials.
    Type: Application
    Filed: March 20, 2019
    Publication date: July 18, 2019
    Inventors: Sarah Mayes, Christine Schmidt
  • Patent number: 10314950
    Abstract: A non-synthetic, hydrophilic, biodegradable, biocompatible polysaccharide based non-toxic anti-adhesion hydrogel barrier is disclosed herein. The barrier of the present invention is formed by constructing a unique interpenetrating, crosslinked network with a unique porosity. Furthermore, the barrier of the present invention is comprised of tunable biopolymers for controllable mechanical robustness and degradation. The barrier of the present invention effectively reduces unwanted adhesions using non-synthetic components.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: June 11, 2019
    Assignee: Board of Regents, The University of Texas System
    Inventors: Sarah Mayes, Christine E. Schmidt
  • Patent number: 10279042
    Abstract: The application of a highly controlled, micron-sized, branched, porous architecture to enhance the handling properties and degradation rate of hydrogels is described in the instant invention. A previously described pattern created through one-step nucleated crystallization in a hydrogel film creates tunable mechanical properties and/or chemical stability for use in tissue engineering applications. The bulk mechanical properties and the degradation rate of the material can be tuned easily by the addition or subtraction of crystalline structure or by the addition and subtraction of backfill material, making this useful for a variety of applications. Relevant mechanical properties that can be tuned through the application of this unique porosity are moduli, elasticity, tensile strength, and compression strength. The method of the present invention can be applied to biopolymers and natural materials as well as synthetic materials.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: May 7, 2019
    Assignee: Board of Regents, The University of Texas System
    Inventors: Sarah Mayes, Christine Schmidt
  • Publication number: 20170312397
    Abstract: A non-synthetic, hydrophilic, biodegradable, biocompatible polysaccharide based non-toxic anti-adhesion hydrogel barrier is disclosed herein. The barrier of the present invention is formed by constructing a unique interpenetrating, crosslinked network with a unique porosity. Furthermore, the barrier of the present invention is comprised of tunable biopolymers for controllable mechanical robustness and degradation. The barrier of the present invention effectively reduces unwanted adhesions using non-synthetic components.
    Type: Application
    Filed: May 16, 2017
    Publication date: November 2, 2017
    Inventors: Sarah Mayes, Christine E. Schmidt
  • Patent number: 9656001
    Abstract: A non-synthetic, hydrophilic, biodegradable, biocompatible polysaccharide based non-toxic anti-adhesion hydrogel barrier is disclosed herein. The barrier of the present invention is formed by constructing a unique interpenetrating, crosslinked network with a unique porosity. Furthermore, the barrier of the present invention is comprised of tunable biopolymers for controllable mechanical robustness and degradation. The barrier of the present invention effectively reduces unwanted adhesions using non-synthetic components.
    Type: Grant
    Filed: July 20, 2015
    Date of Patent: May 23, 2017
    Assignee: Board of Regents, The University of Texas System
    Inventors: Sarah Mayes, Christine E. Schmidt
  • Publication number: 20160015866
    Abstract: A non-synthetic, hydrophilic, biodegradable, biocompatible polysaccharide based non-toxic anti-adhesion hydrogel barrier is disclosed herein. The barrier of the present invention is formed by constructing a unique interpenetrating, crosslinked network with a unique porosity. Furthermore, the barrier of the present invention is comprised of tunable biopolymers for controllable mechanical robustness and degradation. The barrier of the present invention effectively reduces unwanted adhesions using non-synthetic components.
    Type: Application
    Filed: July 20, 2015
    Publication date: January 21, 2016
    Inventors: Sarah Mayes, Christine E. Schmidt
  • Patent number: 9095558
    Abstract: A non-synthetic, hydrophilic, biodegradable, biocompatible polysaccharide based non-toxic anti-adhesion hydrogel barrier is disclosed herein. The barrier of the present invention is formed by constructing a unique interpenetrating, crosslinked network with a unique porosity. Furthermore, the barrier of the present invention is comprised of tunable biopolymers for controllable mechanical robustness and degradation. The barrier of the present invention effectively reduces unwanted adhesions using non-synthetic components.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: August 4, 2015
    Assignee: Board of Regents, The University of Texas System
    Inventors: Sarah Mayes, Christine E. Schmidt
  • Publication number: 20150133377
    Abstract: The application of a highly controlled, micron-sized, branched, porous architecture to enhance the handling properties and degradation rate of hydrogels is described in the instant invention. A previously described pattern created through one-step nucleated crystallization in a hydrogel film creates tunable mechanical properties and/or chemical stability for use in tissue engineering applications. The bulk mechanical properties and the degradation rate of the material can be tuned easily by the addition or subtraction of crystalline structure or by the addition and subtraction of backfill material, making this useful for a variety of applications. Relevant mechanical properties that can be tuned through the application of this unique porosity are moduli, elasticity, tensile strength, and compression strength. The method of the present invention can be applied to biopolymers and natural materials as well as synthetic materials.
    Type: Application
    Filed: January 23, 2015
    Publication date: May 14, 2015
    Inventors: Sarah Mayes, Christine Schmidt
  • Patent number: 8946194
    Abstract: The application of a highly controlled, micron-sized, branched, porous architecture to enhance the handling properties and degradation rate of hydrogels is described in the instant invention. A previously described pattern created through one-step nucleated crystallization in a hydrogel film creates tunable mechanical properties and/or chemical stability for use in tissue engineering applications. The bulk mechanical properties and the degradation rate of the material can be tuned easily by the addition or subtraction of crystalline structure or by the addition and subtraction of backfill material, making this useful for a variety of applications. Relevant mechanical properties that can be tuned through the application of this unique porosity are moduli, elasticity, tensile strength, and compression strength. The method of the present invention can be applied to biopolymers and natural materials as well as synthetic materials.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: February 3, 2015
    Assignee: Board of Regents, University of Texas System
    Inventors: Sarah Mayes, Christine E. Schmidt
  • Publication number: 20120088832
    Abstract: A non-synthetic, hydrophilic, biodegradable, biocompatible polysaccharide based non-toxic anti-adhesion hydrogel barrier is disclosed herein. The barrier of the present invention is formed by constructing a unique interpenetrating, crosslinked network with a unique porosity. Furthermore, the barrier of the present invention is comprised of tunable biopolymers for controllable mechanical robustness and degradation. The barrier of the present invention effectively reduces unwanted adhesions using non-synthetic components.
    Type: Application
    Filed: October 7, 2011
    Publication date: April 12, 2012
    Applicant: Board of Regents, The University of Texas System
    Inventors: Sarah Mayes, Christine E. Schmidt, Daniel Peterson
  • Publication number: 20120088735
    Abstract: The application of a highly controlled, micron-sized, branched, porous architecture to enhance the handling properties and degradation rate of hydrogels is described in the instant invention. A previously described pattern created through one-step nucleated crystallization in a hydrogel film creates tunable mechanical properties and/or chemical stability for use in tissue engineering applications. The bulk mechanical properties and the degradation rate of the material can be tuned easily by the addition or subtraction of crystalline structure or by the addition and subtraction of backfill material, making this useful for a variety of applications. Relevant mechanical properties that can be tuned through the application of this unique porosity are moduli, elasticity, tensile strength, and compression strength. The method of the present invention can be applied to biopolymers and natural materials as well as synthetic materials.
    Type: Application
    Filed: October 7, 2011
    Publication date: April 12, 2012
    Applicant: The Board of Regents, The University of Texas System
    Inventors: Sarah Mayes, Christine E. Schmidt