Patents by Inventor Satoru Miyabe

Satoru Miyabe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6731169
    Abstract: The first amplifier circuit D1 is formed by connecting drains of a pair of N-channel MOS transistors forming the first current mirror circuit CM1 respectively to the drains of P-channel MOS transistors 1 and 2 as a differential input portion, and the second amplifier circuit D2 is formed by connecting drains of a pair of P-channel MOS transistors forming the second current mirror circuit CM2 respectively to the drains of N-channel MOS transistors 5 and 6 as a differential amplifier circuit. The first and second differential amplifier circuits D1 and D2 can amplify the first and second signals having cycles corresponding with each other with their duty ratios kept unchanged regardless of their operating point potentials. Further, the two outputs are combined into one output to suppress variation of the operating point potential of the output attributable to process-related factors, fluctuation of the power supply potential due to the oscillating operation and the like.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: May 4, 2004
    Assignee: Nippon Precision Circuits
    Inventors: Kunihiko Tsukagoshi, Satoru Miyabe, Kazuhisa Oyama
  • Publication number: 20030095004
    Abstract: The first amplifier circuit D1 is formed by connecting drains of a pair of N-channel MOS transistors forming the first current mirror circuit CM1 respectively to the drains of P-channel MOS transistors 1 and 2 as a differential input portion, and the second amplifier circuit D2 is formed by connecting drains of a pair of P-channel MOS transistors forming the second current mirror circuit CM2 respectively to the drains of N-channel MOS transistors 5 and 6 as a differential amplifier circuit. The first and second differential amplifier circuits D1 and D2 can amplify the first and second signals having cycles corresponding with each other with their duty ratios kept unchanged regardless of their operating point potentials. Further, the two outputs are combined into one output to suppress variation of the operating point potential of the output attributable to process-related factors, fluctuation of the power supply potential due to the oscillating operation and the like.
    Type: Application
    Filed: December 20, 2002
    Publication date: May 22, 2003
    Inventors: Kunihiko Tsukagoshi, Satoru Miyabe, Kazuhisa Oyama
  • Patent number: 6559698
    Abstract: To restrain cycle-to-cycle jitter in a clock generator subjected to EMI a 2nd order PLL having a loop filter including a first capacitor and a first resistor, is provided where a reduction in a comparison frequency is avoided by using a clock modulating circuit. The clock modulation circuit is controlled by an intermediary signal provided by dividing an oscillation signal of a voltage controlled oscillator. The output of the clock modulation circuit is used to recurrently control a divider for dividing the output of the voltage controlled oscillator. Generation of high frequency noise is minimized by using a 1st order &Dgr;&Sgr; modulator(21) in the clock modulation circuit. The system behaves like a 3rd order PLL due to the presence of a second capacitor having a capacitance value of about {fraction (1/10)} or more than that of the first capacitor. The second capacitor is placed in parallel with the loop filter to restrain the cycle-to-cycle jitter by effectively removing the high frequency noise.
    Type: Grant
    Filed: October 17, 2000
    Date of Patent: May 6, 2003
    Assignee: Nippon Precision Circuits, Inc.
    Inventor: Satoru Miyabe
  • Patent number: 6476680
    Abstract: To provide a cascode amplifying circuit having large amplifying gain without narrowing an output operational range or deteriorating response performance of the circuit even with a constitution by a small number of elements is achieved by applying negative feedback from the source to the gate of an MOS transistor M2 provided with an output terminal at the drain via the source and the drain of an MOS transistor M3 of N-channel type, the source and the drain of an MOS transistor M4 of P-channel type and a current mirror constituted by MOS transistors M5 and M6 of N-channel type. By this constitution, operation of the MOS transistor M3 is not effected with influence of lowering of voltage of the source of the MOS transistor M2, a wide output operational range is provided and mirror effect with respect to gate/drain capacitance of the MOS transistor is restrained to thereby restrain a reduction in response speed.
    Type: Grant
    Filed: November 6, 2001
    Date of Patent: November 5, 2002
    Assignees: Nippon Precision Circuits, Inc.
    Inventors: Satoru Miyabe, Yasuhiro Sugimoto
  • Publication number: 20020135402
    Abstract: In a sample-and-hold circuit using a completely differential type operational amplifier circuit, to promote operational stability, to restrain a variation in a balance point of a middle value of differential output signals and to promote stability and accuracy of an A/D converter are achieved by a constitution as bellow.
    Type: Application
    Filed: November 6, 2001
    Publication date: September 26, 2002
    Inventors: Satoru Miyabe, Yasuhiro Sugimoto
  • Patent number: 6437608
    Abstract: In a sample-and-hold circuit using a completely differential type operational amplifier circuit, to promote operational stability, to restrain a variation in a balance point of a middle value of differential output signals and to promote stability and accuracy of an A/D converter are achieved by a constitution as bellow.
    Type: Grant
    Filed: November 6, 2001
    Date of Patent: August 20, 2002
    Assignees: Nippon Precision Circuits Inc.
    Inventors: Satoru Miyabe, Yasuhiro Sugimoto
  • Patent number: 6429695
    Abstract: A differential comparison circuit capable of easily obtaining desired circuit accuracy and comparing differential signals with reduced influences of fluctuation of a power source voltage. Input/output terminals I/O1 and I/O2 of a latch circuit 1 are connected to the drain terminals of MOS transistors M1 and M2 having the same characteristics. Input terminals IN1 and IN2 are provided to the gate and source terminals of the MOS transistor M2, and input terminals IN3 and IN4 are provided to the gate and source terminals of the MOS transistor M2. A bias circuit 2 brings the MOS transistors M1 and M2 into the same bias state. The difference of the input signals supplied to the input terminals IN1 and IN2 is compared with the difference of the input signals supplied to the input terminals IN3 and IN4. Since the comparison result is outputted from the first and second input/output terminals I/O1 and I/O2, the input offset voltage does not affect the differential comparison circuit.
    Type: Grant
    Filed: November 6, 2001
    Date of Patent: August 6, 2002
    Assignees: Nippon Precision Circuits Inc., Yasuhiro Sugimoto
    Inventors: Satoru Miyabe, Yasuhiro Sugimoto
  • Publication number: 20020089355
    Abstract: A differential comparison circuit capable of easily obtaining desired circuit accuracy and comparing differential signals with reduced influences of fluctuation of a power source voltage.
    Type: Application
    Filed: November 6, 2001
    Publication date: July 11, 2002
    Inventors: Satoru Miyabe, Yasuhiro Sugimoto
  • Patent number: 6411172
    Abstract: There is disclosed an oscillator circuit in which the first capacitor is connected between the input side of a CMOS inverter in a quartz oscillator circuit and a higher potential side, the second load capacitor is connected between the input side of the inverter and a lower potential side, the third load capacitor is connected between the output side of the inverter and the higher potential side, and the fourth load capacitor is connected between the output side of the inverter and the lower potential side, so that variation in amplitudes of the voltage sources synchronized with the oscillation can be reduced with the realization of lower current consumption. There is also disclosed an oscillator circuit of reduced circuit scale. A CMOS inverter for producing oscillations, an AC coupling capacitor, and a buffer circuit are formed on one chip. A protective circuit that has been heretofore required at the input terminal portion of the buffer circuit can be dispensed with.
    Type: Grant
    Filed: January 3, 2001
    Date of Patent: June 25, 2002
    Assignee: Nippon Precision Circuits, Inc.
    Inventors: Kunihiko Tsukagoshi, Satoru Miyabe, Kazuhisa Oyama
  • Publication number: 20020067213
    Abstract: To provide a cascode amplifying circuit having large amplifying gain without narrowing an output operational range or deteriorating response performance of the circuit even with a constitution by a small number of elements is achieved by applying negative feedback from the source to the gate of an MOS transistor M2 provided with an output terminal at the drain via the source and the drain of an MOS transistor M3 of N-channel type, the source and the drain of an MOS transistor M4 of P-channel type and a current mirror constituted by MOS transistors M5 and M6 of N-channel type. By this constitution, operation of the MOS transistor M3 is not effected with influence of lowering of voltage of the source of the MOS transistor M2, a wide output operational range is provided and mirror effect with respect to gate/drain capacitance of the MOS transistor is restrained to thereby restrain a reduction in response speed.
    Type: Application
    Filed: November 6, 2001
    Publication date: June 6, 2002
    Inventors: Satoru Miyabe, Yasuhiro Sugimoto
  • Patent number: 6351149
    Abstract: There is disclosed a MOS transistor output circuit capable of suppressing ringing and other noises and of operating at high speed under low power supply voltages. A signal corresponding to an input signal is applied to the gates of a first p-channel MOS transistor and a first n-channel MOS transistor. A control circuit detects the falling edge of the input signal to create a first signal. A second p-channel MOS transistor is held in conduction by the first signal during a period beginning with the rising edge of the output signal and ending with the instant at which the output signal can be regarded as having logic high (H) level. The rising edge of the input signal is detected to create a second signal. A second n-channel MOS transistor is held in conduction by the second signal during a period beginning with the falling edge of the output signal and ending with the instant at which the output signal can be regarded as having logic low (L) level.
    Type: Grant
    Filed: December 3, 1999
    Date of Patent: February 26, 2002
    Assignee: Nippon Precision Circuits, Inc.
    Inventor: Satoru Miyabe
  • Patent number: 6329884
    Abstract: There is disclosed an oscillator circuit in which the first capacitor is connected between the input side of a CMOS inverter in a quartz oscillator circuit and a higher potential side, the second load capacitor is connected between the input side of the inverter and a lower potential side, the third load capacitor is connected between the output side of the inverter and the higher potential side, and the fourth load capacitor is connected between the output side of the inveter and the lower potential side, so that variation in amplitudes of the voltage sources synchronized with the oscillation can be reduced with the realization of lower current consumption.
    Type: Grant
    Filed: October 8, 1998
    Date of Patent: December 11, 2001
    Assignee: Nippon Precision Circuits, Inc.
    Inventors: Kunihiko Tsukagoshi, Satoru Miyabe, Kazuhisa Oyama
  • Publication number: 20010020876
    Abstract: There is disclosed an oscillator circuit in which the first capacitor is connected between the input side of a CMOS inverter in a quartz oscillator circuit and a higher potential side, the second load capacitor is connected between the input side of the inverter and a lower potential side, the third load capacitor is connected between the output side of the inverter and the higher potential side, and the fourth load capacitor is connected between the output side of the inverter and the lower potential side, so that variation in amplitudes of the voltage sources synchronized with the oscillation can be reduced with the realization of lower current consumption.
    Type: Application
    Filed: January 3, 2001
    Publication date: September 13, 2001
    Inventors: Kunihiko Tsukagoshi, Satoru Miyabe, Kazuhisa Oyama
  • Publication number: 20010013810
    Abstract: The first amplifier circuit D1 is formed by connecting drains of a pair of N-channel MOS transistors forming the first current mirror circuit CM1 respectively to the drains of P-channel MOS transistors 1 and 2 as a differential input portion, and the second amplifier circuit D2 is formed by connecting drains of a pair of P-channel MOS transistors forming the second current mirror circuit CM2 respectively to the drains of N-channel MOS transistors 5 and 6 as a differential amplifier circuit. The first and second differential amplifier circuits D1 and D2 can amplify the first and second signals having cycles corresponding with each other with their duty ratios kept unchanged regardless of their operating point potentials. Further, the two outputs are combined into one output to suppress variation of the operating point potential of the output attributable to process-related factors, fluctuation of the power supply potential due to the oscillating operation and the like.
    Type: Application
    Filed: April 20, 2001
    Publication date: August 16, 2001
    Inventors: Kunihiko Tsukagoshi, Satoru Miyabe, Kazuhisa Oyama
  • Patent number: 6242980
    Abstract: The first amplifier circuit D1 is formed by connecting drains of a pair of N-channel MOS transistors forming the first current mirror circuit CM1 respectively to the drains of P-channel MOS transistors 1 and 2 as a differential input portion, and the second amplifier circuit D2 is formed by connecting drains of a pair of P-channel MOS transistors forming the second current mirror circuit CM2 respectively to the drains of N-channel MOS transistors 5 and 6 as a differential amplifier circuit. The first and second differential amplifier circuits D1 and D2 can amplify the first and second signals having cycles corresponding with each other with their duty ratios kept unchanged regardless of their operating point potentials. Further, the two outputs are combined into one output to suppress variation of the operating point potential of the output attributable to process-related factors, fluctuation of the power supply potential due to the oscillating operation and the like.
    Type: Grant
    Filed: November 18, 1998
    Date of Patent: June 5, 2001
    Assignee: Nippon Precision Circuits
    Inventors: Kunihiko Tsukagoshi, Satoru Miyabe, Kazuhisa Oyama
  • Patent number: 6191661
    Abstract: There is disclosed an oscillator circuit in which the first capacitor is connected between the input side of a CMOS inverter in a quartz oscillator circuit and a higher potential side, the second load capacitor is connected between the input side of the inverter and a lower potential side, the third load capacitor is connected between the output side of the inverter and the higher potential side, and the fourth load capacitor is connected between the output side of the inverter and the lower potential side, so that variation in amplitudes of the voltage sources synchronized with the oscillation can be reduced with the realization of lower current consumption. There is also disclosed an oscillator circuit of reduced circuit scale. A CMOS inverter for producing oscillations an AC coupling capacitor, and a buffer circuit are formed on one chip. A protective circuit that has been heretofore required at the input terminal portion of the buffer circuit can be dispensed with.
    Type: Grant
    Filed: December 21, 1998
    Date of Patent: February 20, 2001
    Assignee: Nippon Precision Circuits, Inc.
    Inventors: Kunihiko Tsukagoshi, Satoru Miyabe, Kazuhisa Oyama
  • Patent number: 6072333
    Abstract: The drains of P- and N-channel MOS transistors 1 and 2 are connected to each other. An output terminal is formed at the node of the drains. Each of first and second amplifier stages 4 and 5 is configured by cascading an n number of CMOS inverters. The amplifier stages drive first and second last-stage CMOS inverters 6 and 7 to drive the P- and N-channel MOS transistors 1 and 2, respectively. A dummy CMOS inverter 8 is disposed so that the input is connected to the node of the second amplifier stage 5 and the second last-stage CMOS inverter 7. The load of the second amplifier stage 5 is equal to that of the first amplifier stage 4. The drivabilities of the CMOS inverters of the same stage in the first and second amplifier stages 4 and 5 are made equal to each other. According to this configuration, the number of CMOS inverters which must be checked in a process of adjusting the duty can be reduced.
    Type: Grant
    Filed: November 4, 1998
    Date of Patent: June 6, 2000
    Assignee: Nippon Precision Circuits, Inc.
    Inventors: Kunihiko Tsukagoshi, Satoru Miyabe, Kazuhisa Oyama
  • Patent number: 6025756
    Abstract: An oscillation circuit that improves the duty controllability by cross-coupling ring oscillators that are comprised of current inverters. The sources of current supply circuits 4a-4c and 6a-6c are connected to a power supply and their drains are connected to terminals A in corresponding current inverters, respectively. Each of the gates of those current supply circuits receives an output of a current inverter corresponding, one to one, to a current inverter to which the current supply circuit is connected.
    Type: Grant
    Filed: August 26, 1998
    Date of Patent: February 15, 2000
    Assignee: Nippon Precision Circuits Inc.
    Inventor: Satoru Miyabe
  • Patent number: 6025757
    Abstract: There is disclosed an oscillator circuit comprising the first load capacitor with one electrode there of being connected with an input side of a CMOS inverter within a quartz oscillator circuit, and the second load capacitor with one electrode there of being connected with the output side of the inverter, wherein the inverter is coupled to a lower potential side via a current-limiting device, and the other electrodes of the first and second load capacitors are coupled to a lower potential side via the above-described current-limiting device. Thus, variations in the power-supply voltages synchronized with oscillation are reduced with realization of lower current consumption.
    Type: Grant
    Filed: November 13, 1998
    Date of Patent: February 15, 2000
    Assignee: Nippon Precision Circuits Inc.
    Inventors: Kunihiko Tsukagoshi, Satoru Miyabe, Kazuhisa Oyama
  • Patent number: 5614871
    Abstract: There is disclosed a voltage-controlled oscillator circuit capable of being operated at low power supply voltages and accomplishing low electric power consumption. The circuit permits the duty cycle to be controlled well. The circuit is capable of operating at high speeds. The circuit comprises a first and a second dynamic latch circuits producing oscillation output. Each dynamic latch circuit consists of a series combination of a P-channel MOS transistor and an N-channel MOS transistor. An output terminal is connected to the junction of these two transistors. The output from each latch circuit is inverted according to the voltage at the gate of each MOS transistor and dynamically latches the state of the output. This inversion is performed by turning on the MOS transistors by first and second capacitive elements and by first and second comparator circuits. The capacitive elements are charged and discharged by the outputs from the dynamic latch circuits.
    Type: Grant
    Filed: January 22, 1996
    Date of Patent: March 25, 1997
    Assignee: Nippon Precision Circuits Inc.
    Inventor: Satoru Miyabe