Patents by Inventor Scott A. Hearld

Scott A. Hearld has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9242630
    Abstract: A powertrain system includes an internal combustion engine rotatably coupled to a non-combustion torque machine and a torque converter which is rotatably coupled to an input member of a transmission. A method for operating the powertrain system includes operating the torque converter in a controlled slip operating state and controlling a torque converter clutch capacity in response to a driver requested braking torque. Target torque outputs from the engine and from the torque machine are determined in response to the driver requested braking torque subjected to a time delay. A torque modifier for the torque machine is determined in response to a torque converter clutch slip error. Torque output from the engine is controlled in response to the target torque output from the engine, and torque output from the torque machine is controlled in response to the target torque output and the torque modifier from the torque machine.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: January 26, 2016
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: John S. Mitchell, Jeremy V. Horgan, Christopher E. Whitney, Scott A. Hearld
  • Publication number: 20150210262
    Abstract: A powertrain system includes an internal combustion engine rotatably coupled to a non-combustion torque machine and a torque converter which is rotatably coupled to an input member of a transmission. A method for operating the powertrain system includes operating the torque converter in a controlled slip operating state and controlling a torque converter clutch capacity in response to a driver requested braking torque. Target torque outputs from the engine and from the torque machine are determined in response to the driver requested braking torque subjected to a time delay. A torque modifier for the torque machine is determined in response to a torque converter clutch slip error. Torque output from the engine is controlled in response to the target torque output from the engine, and torque output from the torque machine is controlled in response to the target torque output and the torque modifier from the torque machine.
    Type: Application
    Filed: January 28, 2014
    Publication date: July 30, 2015
    Inventors: JOHN S. MITCHELL, JEREMY V. HORGAN, CHRISTOPHER E. WHITNEY, SCOTT A. HEARLD
  • Patent number: 8657721
    Abstract: A powertrain system includes an engine control module that generates a negative torque transition signal based on a pending negative torque event of an engine. A transmission control module receives the negative torque transition signal from the engine control module. The transmission control module increases a slip speed of a torque converter clutch in preparation for the pending negative torque event by adjusting pressure in the torque converter clutch prior to the pending negative torque event. The transmission control module decreases the slip speed in the torque converter clutch based on completion of a transition at least one of to the pending negative torque event and from the pending negative torque event.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: February 25, 2014
    Inventors: Christopher E. Whitney, Jeremy V. Horgan, Scott A. Hearld, Lars Mikael Buur, Ryan Goode, Krishnendu Kar
  • Patent number: 8626411
    Abstract: A control system for a vehicle, comprises a torque determination module, a control module, and a transmission control module. The torque determination module determines torque produced by an internal combustion engine. The control module sets a signal to an active state when the torque is greater than a predetermined torque and a slip amount between an engine output speed and a transmission input speed is zero. The predetermined torque corresponds to a potential vibration amount when the slip amount is zero. The transmission control module selectively increases the slip amount above zero in response to the setting of the signal to the active state.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: January 7, 2014
    Inventors: Christopher E. Whitney, William L. Aldrich, III, Jeffrey M. Kaiser, Daniel J. Wickman, Scott A. Hearld
  • Patent number: 8332109
    Abstract: A method for responding to a rapid change in engine torque includes monitoring a change in engine torque and determining a rapid change in engine torque when the change in engine torque exceeds a threshold change in engine torque. Subsequent to determining a rapid change in engine torque, an increase in the torque converter slip is provided by reducing the torque converter clutch pressure command by a selected value and thereafter the feedback control is deactivated for a predetermined duration. Subsequent to the predetermined duration, the feedback control is reactivated to decrease the torque converter slip toward a desired torque converter slip value.
    Type: Grant
    Filed: January 4, 2010
    Date of Patent: December 11, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Paul G. Otanez, Chunhao J. Lee, Farzad Samie, Scott A. Hearld, Xu Chen, Daniel J. Wickman, Xuefeng Tim Tao
  • Publication number: 20120234123
    Abstract: A powertrain system includes an engine control module that generates a negative torque transition signal based on a pending negative torque event of an engine. A transmission control module receives the negative torque transition signal from the engine control module. The transmission control module increases a slip speed of a torque converter clutch in preparation for the pending negative torque event by adjusting pressure in the torque converter clutch prior to the pending negative torque event. The transmission control module decreases the slip speed in the torque converter clutch based on completion of a transition at least one of to the pending negative torque event and from the pending negative torque event.
    Type: Application
    Filed: May 5, 2011
    Publication date: September 20, 2012
    Applicant: GM Global Technology Operations LLC
    Inventors: Christopher E. Whitney, Jeremy V. Horgan, Scott A. Hearld, Lars Mikael Buur, Ryan Goode, Krishnendu Kar
  • Publication number: 20110166757
    Abstract: A method for responding to a rapid change in engine torque includes monitoring a change in engine torque and determining a rapid change in engine torque when the change in engine torque exceeds a threshold change in engine torque. Subsequent to determining a rapid change in engine torque, an increase in the torque converter slip is provided by reducing the torque converter clutch pressure command by a selected value and thereafter the feedback control is deactivated for a predetermined duration. Subsequent to the predetermined duration, the feedback control is reactivated to decrease the torque converter slip toward a desired torque converter slip value.
    Type: Application
    Filed: January 4, 2010
    Publication date: July 7, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Paul G. Otanez, Chunhao J. Lee, Farzad Samie, Scott A. Hearld, Xu Chen, Daniel J. Wickman, Xuefeng Tim Tao
  • Publication number: 20110112734
    Abstract: A control system for a vehicle, comprises a torque determination module, a control module, and a transmission control module. The torque determination module determines torque produced by an internal combustion engine. The control module sets a signal to an active state when the torque is greater than a predetermined torque and a slip amount between an engine output speed and a transmission input speed is zero. The predetermined torque corresponds to a potential vibration amount when the slip amount is zero. The transmission control module selectively increases the slip amount above zero in response to the setting of the signal to the active state.
    Type: Application
    Filed: January 28, 2010
    Publication date: May 12, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: CHRISTOPHER E. WHITNEY, WILLIAM L. ALDRICH, III, JEFFREY M. KAISER, DANIEL J. WICKMAN, SCOTT A. HEARLD