Patents by Inventor Scott A. Raszka

Scott A. Raszka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110242272
    Abstract: A multi-directional imaging assembly includes a multi-directional imaging bundle having at least two rigid image-conducting branch elements. Each branch element has opposed image-input and image-output faces and at least one bend between the faces. The branch elements are mutually bound such that the image-input faces are disparately directed and the image-output faces coincide to define a common image-output face. Optically aligned with each image-input face is a focusing element that defines a field of view correlating to a spatial region. An image of the spatial region correlating to the field of view defined by a focusing element is acquired and projected onto the image-input face with which that focusing element is optically aligned. Images conducted through the branch elements, and outputted through the common image-output face, are optically communicated to an image detector array.
    Type: Application
    Filed: February 18, 2011
    Publication date: October 6, 2011
    Inventors: Kevin Tabor, Scott A. Raszka, Kerry Highbarger
  • Publication number: 20100092142
    Abstract: A light-transmission assembly includes a hermetic optical connection having a housing with a housing side wall extending between opposed first and second housing ends. The housing is configured for sealable securement within a bulkhead bore through a bulkhead separating regions of relatively low and high fluid pressure and includes an interior surface defining a housing bore that extends between and through the first and second housing ends. Sealably bonded within the housing bore is a light-transmissive, rigid optical component having opposed first and second optical-component faces and an optical-component side wall extending between the optical-component faces. The assembly further includes at least a first flexible light conduit having opposed first and second light-conduit faces through which light can enter and exit the first flexible light conduit. The first light-conduit face of the first light conduit is retained in optical alignment with the first optical-component face.
    Type: Application
    Filed: August 25, 2009
    Publication date: April 15, 2010
    Inventors: Thomas J. Walsh, III, Scott A. Raszka
  • Patent number: 7400795
    Abstract: An elongated light-guiding element includes opposed incident and emission ends between which light propagates by total internal reflection. The light-guiding element includes a glass core with first and second glass core ends and a glass-core outer surface. A non-glass polymeric optical layer extends over at least a portion of the length of the glass core and is disposed peripherally thereabout. The optical layer has first and second optical-layer ends and an optical-layer exterior surface extending between the first and second optical-layer ends. The glass core and the polymeric optical layer exhibit indices of refraction that are matched to one another as closely as practicable such that the combination of the glass core and the optical layer exhibits optical properties similar to those that would be exhibited by an optical element of similar shape and dimensions fabricated from a single, continuous mass of optical material having a refractive index equal to the that of the glass core material.
    Type: Grant
    Filed: October 6, 2007
    Date of Patent: July 15, 2008
    Assignee: Schott Corporation
    Inventors: Scott A. Raszka, Kevin Tabor, Paulettel Onorato
  • Publication number: 20080107387
    Abstract: An elongated light-guiding element includes opposed incident and emission ends between which light propagates by total internal reflection. The light-guiding element includes a glass core with first and second glass core ends and a glass-core outer surface. A non-glass polymeric optical layer extends over at least a portion of the length of the glass core and is disposed peripherally thereabout. The optical layer has first and second optical-layer ends and an optical-layer exterior surface extending between the first and second optical-layer ends. The glass core and the polymeric optical layer exhibit indices of refraction that are matched to one another as closely as practicable such that the combination of the glass core and the optical layer exhibits optical properties similar to those that would be exhibited by an optical element of similar shape and dimensions fabricated from a single, continuous mass of optical material having a refractive index equal to the that of the glass core material.
    Type: Application
    Filed: October 6, 2007
    Publication date: May 8, 2008
    Inventors: Scott A. Raszka, Kevin Tabor, Paulettel Onorato
  • Patent number: 7308177
    Abstract: A of fabricating a partially flexible optical fiber bundle includes forming plural helical fiber ribbons, each helical ribbon being formed by winding a fiber about a mandrel and adjacently fusing a first selected set of fiber portions within each ribbon to define and ends region. The ends regions of multiple fiber helixes are stacked and bonded to form a fiber bundle with and ends section. The ends section is cut through to yield opposed input and output ends of the fiber bundle. Intermediate rigid sections are formed along the length of the bundle by various alternative methods of adjacently bonding selected portions of the constituent ribbon and bundle fibers.
    Type: Grant
    Filed: July 22, 2006
    Date of Patent: December 11, 2007
    Assignee: Schott Corporation
    Inventors: Scott A. Raszka, Gerald P. Senecal