Patents by Inventor Scott Andrew Weaver

Scott Andrew Weaver has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9200521
    Abstract: A manufacturing method includes providing a substrate with an outer surface and at least one interior space, applying a coating on a portion of the substrate and forming one or more grooves in the coating, wherein each groove extends at least partially along the coating. The method further includes processing at least a portion of the surface of the coating to plastically deform the coating in the vicinity of the top of a respective groove. An additional coating is applied over at least a portion of the surface of the coating. A component is disclosed and includes a substrate, a coating disposed on at least a portion of the substrate, and defining one or more grooves therein, and an additional coating disposed over at least a portion of the coating. The substrate, the coating and the additional coating together define one or more channels for cooling the component.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: December 1, 2015
    Assignee: General Electric Company
    Inventors: Ronald Scott Bunker, Scott Andrew Weaver
  • Patent number: 9111734
    Abstract: A system for use in coating an interior surface of an object, the system including a vacuum chamber enclosure defining an interior cavity configured to receive the object, a first electrode positioned within the interior cavity of the vacuum chamber enclosure, and a second electrode positioned within the interior cavity such that a space between the first and second electrodes is at least partially defined by the interior surface of the object. The first electrode is fabricated from a first material and the second electrode is fabricated from a second material. The system includes an arc supply coupled to the first and second electrodes. The arc supply selectively vaporizes material from one of the first electrode and the second electrode when current is supplied from one of the first and second electrodes such that the vaporized material forms a layer of material on the interior surface of the object.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: August 18, 2015
    Assignee: General Electric Company
    Inventor: Scott Andrew Weaver
  • Publication number: 20150125279
    Abstract: A submersible pump component is provided. The component includes a substrate including an outer surface in a plurality of orientations, wherein a first portion of the outer surface is configured to be worn by a first wear mechanism, and a second portion of said outer surface is configured to be worn by a second wear mechanism. The component also includes at least one layer of a first coating applied to the outer surface, and at least one layer of a second coating applied over said first coating at said second portion of said outer surface. The first coating is configured to inhibit the first wear mechanism at the first portion of the outer surface, and the second coating is configured to inhibit the second wear mechanism at the second portion of the outer surface.
    Type: Application
    Filed: November 4, 2013
    Publication date: May 7, 2015
    Applicant: General Electric Company
    Inventors: Patrick James McCluskey, Dennis Michael Gray, Scott Andrew Weaver, Bala Srinivasan Parthasarathy, Richard Arthur Nardi, JR., Charles Joseph Underwood
  • Publication number: 20150114828
    Abstract: A system for use in coating an interior surface of an object is provided. The system includes a vacuum chamber enclosure defining an interior cavity configured to receive the object, an anode positioned within the interior cavity of the vacuum chamber enclosure, and a cathode positioned within the interior cavity of said vacuum chamber enclosure such that a space between the anode and the cathode is at least partially defined by the interior surface of the object. At least a portion of the cathode vaporizes when current is supplied thereto such that vaporized cathode material coats the interior surface of the object.
    Type: Application
    Filed: October 31, 2013
    Publication date: April 30, 2015
    Applicant: General Electric Company
    Inventor: Scott Andrew Weaver
  • Publication number: 20150114825
    Abstract: A system for use in coating an interior surface of an object, the system including a vacuum chamber enclosure defining an interior cavity configured to receive the object, a first electrode positioned within the interior cavity of the vacuum chamber enclosure, and a second electrode positioned within the interior cavity such that a space between the first and second electrodes is at least partially defined by the interior surface of the object. The first electrode is fabricated from a first material and the second electrode is fabricated from a second material. The system includes an arc supply coupled to the first and second electrodes. The arc supply selectively vaporizes material from one of the first electrode and the second electrode when current is supplied from one of the first and second electrodes such that the vaporized material forms a layer of material on the interior surface of the object.
    Type: Application
    Filed: December 2, 2013
    Publication date: April 30, 2015
    Applicant: General Electric Company
    Inventor: Scott Andrew Weaver
  • Publication number: 20150101925
    Abstract: A system for use in coating an interior surface of an object is provided. The system includes a vacuum chamber enclosure defining an interior configured to receive the object, and a cathode coupled to the vacuum chamber enclosure. The cathode is fabricated from a coating material and has an outer surface. The cathode is configured such that when a current is applied to the cathode, an arc is formed on the outer surface and the coating material is removed from the cathode to form a cloud of coating material. The system also includes a collimator configured to be positioned between the cathode and the object configured to focus the cloud into a beam of coating material and to direct the beam towards the object, and a magnet configured to alter a path of the beam such that the beam is directed towards the interior surface of the object.
    Type: Application
    Filed: October 16, 2013
    Publication date: April 16, 2015
    Applicant: General Electric Company
    Inventors: Scott Andrew Weaver, Dennis Michael Gray
  • Publication number: 20150101924
    Abstract: A plasma deposition assembly for use in coating an interior surface of an object is provided. The assembly includes a head portion including an anode and a cathode adjacent to the anode. The cathode is fabricated from a coating material. The cathode also includes an outer surface adjacent to the interior surface of the object, wherein current is supplied to the cathode to form an arc on the outer surface such that the coating material is directed substantially radially outward from the outer surface of the cathode towards the interior surface of the object. The assembly also includes a moveable arm coupled to the head portion and configured to translate the head portion relative to the interior surface of the object as the arc deposits the coating material on the interior surface of the object.
    Type: Application
    Filed: October 16, 2013
    Publication date: April 16, 2015
    Applicant: General Electric Company
    Inventors: Scott Andrew Weaver, Dennis Michael Gray
  • Patent number: 9003657
    Abstract: A manufacturing method includes providing a substrate with an outer surface and at least one interior space and machining the substrate to selectively remove a portion of the substrate and define one or more cooling supply holes therein. Each of the one or more cooling supply holes is in fluid communication with the at least one interior space. The method further includes disposing an open cell porous metallic layer on at least a portion of the substrate. The open cell porous metallic layer is in fluid communication with the one or more cooling supply holes. A coating layer is disposed on the open cell porous metallic layer. The coating layer having formed therein one or more cooling exit holes in fluid communication with the open cell porous metallic layer. The substrate, the one or more cooling supply holes, the open cell porous metallic layer and the cooling exit holes providing a cooling network for a component.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: April 14, 2015
    Assignee: General Electric Company
    Inventors: Ronald Scott Bunker, Scott Andrew Weaver, Wayne Charles Hasz
  • Patent number: 8910379
    Abstract: Methods of fabricating coated components using multiple types of fillers are provided. One method comprises forming one or more grooves in an outer surface of a substrate. Each groove has a base and extends at least partially along the outer surface of the substrate. The method further includes disposing a sacrificial filler within the groove(s), disposing a permanent filler over the sacrificial filler, disposing a coating over at least a portion of the substrate and over the permanent filler, and removing the first sacrificial filler from the groove(s), to define one or more channels for cooling the component. A component with a permanent filler is also provided.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: December 16, 2014
    Assignee: General Electric Company
    Inventors: Raul Basilio Rebak, Renee Bushey Rohling, Scott Andrew Weaver, Ronald Scott Bunker, Don Mark Lipkin, Lawrence Bernard Kool
  • Patent number: 8852786
    Abstract: A method of sealing a ceramic component to a metal component for a metal halide battery is provided. The method involves the steps of coating a portion of the ceramic component with a metallic coating, and then bonding the coated ceramic component to the metal component. The metallic coating includes a reactive metal. A sealing structure formed by using such a method is also presented.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: October 7, 2014
    Assignee: General Electric Company
    Inventors: Scott Andrew Weaver, Don Mark Lipkin, Radhakrishna Badekila Bhat, Andrew Joseph Detor, Brian William Cerniglia
  • Publication number: 20140169943
    Abstract: A manufacturing method includes providing a substrate with an outer surface and at least one interior space and machining the substrate to selectively remove a portion of the substrate and define one or more cooling supply holes therein. Each of the one or more cooling supply holes is in fluid communication with the at least one interior space. The method further includes disposing an open cell porous metallic layer on at least a portion of the substrate. The open cell porous metallic layer is in fluid communication with the one or more cooling supply holes. A coating layer is disposed on the open cell porous metallic layer. The coating layer having formed therein one or more cooling exit holes in fluid communication with the open cell porous metallic layer. The substrate, the one or more cooling supply holes, the open cell porous metallic layer and the cooling exit holes providing a cooling network for a component.
    Type: Application
    Filed: December 18, 2012
    Publication date: June 19, 2014
    Applicant: General Electric Company
    Inventors: Ronald Scott Bunker, Scott Andrew Weaver, Wayne Charles Hasz
  • Publication number: 20140116660
    Abstract: A method of fabricating a component is provided. The component includes a substrate having an outer surface and an inner surface, where the inner surface defines at least one interior space. The fabrication method includes forming at least one groove in the outer substrate surface. Each groove extends at least partially along the outer substrate surface and has an asymmetric cross-section. The method further includes forming at least one access hole in the substrate. Each access hole connects the respective groove in fluid communication with the respective interior space. A coating is disposed over at least a portion of the substrate surface, such that the groove(s) and the coating together define one or more channels for cooling the component. A component is also disclose and has at least one groove with an asymmetric cross-section.
    Type: Application
    Filed: October 31, 2012
    Publication date: May 1, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Jesse Blair Butler, Ronald Scott Bunker, Scott Andrew Weaver, Kevin Richard Kirtley
  • Publication number: 20140120274
    Abstract: A manufacturing method includes providing a substrate with an outer surface and at least one interior space, applying a coating on a portion of the substrate and forming one or more grooves in the coating, wherein each groove extends at least partially along the coating. The method further includes processing at least a portion of the surface of the coating to plastically deform the coating in the vicinity of the top of a respective groove. An additional coating is applied over at least a portion of the surface of the coating. A component is disclosed and includes a substrate, a coating disposed on at least a portion of the substrate, and defining one or more grooves therein, and an additional coating disposed over at least a portion of the coating. The substrate, the coating and the additional coating together define one or more channels for cooling the component.
    Type: Application
    Filed: October 30, 2012
    Publication date: May 1, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ronald Scott Bunker, Scott Andrew Weaver
  • Publication number: 20140004310
    Abstract: Methods of fabricating coated components using multiple types of fillers are provided. One method comprises forming one or more grooves in an outer surface of a substrate. Each groove has a base and extends at least partially along the outer surface of the substrate. The method further includes disposing a sacrificial filler within the groove(s), disposing a permanent filler over the sacrificial filler, disposing a coating over at least a portion of the substrate and over the permanent filler, and removing the first sacrificial filler from the groove(s), to define one or more channels for cooling the component. A component with a permanent filler is also provided.
    Type: Application
    Filed: September 4, 2013
    Publication date: January 2, 2014
    Applicant: General Electric Company
    Inventors: Raul Basilio Rebak, Renee Bushey Rohling, Scott Andrew Weaver, Ronald Scott Bunker, Don Mark Lipkin, Lawrence Bernard Kool
  • Patent number: 8601691
    Abstract: Methods of fabricating coated components using multiple types of fillers are provided. One method comprises forming one or more grooves in an outer surface of a substrate. Each groove has a base and extends at least partially along the outer surface of the substrate. The method further includes disposing a sacrificial filler within the groove(s), disposing a permanent filler over the sacrificial filler, disposing a coating over at least a portion of the substrate and over the permanent filler, and removing the first sacrificial filler from the groove(s), to define one or more channels for cooling the component. A component with a permanent filler is also provided.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: December 10, 2013
    Assignee: General Electric Company
    Inventors: Raul Basilio Rebak, Renee Bushey Rohling, Scott Andrew Weaver, Ronald Scott Bunker, Don Mark Lipkin, John Brian McDermott, Lawrence Bernard Kool, Ann Melinda Ritter
  • Publication number: 20130078418
    Abstract: A manufacturing method is provided. The manufacturing method includes forming one or more grooves in a component that comprises a substrate with an outer surface. The substrate has at least one interior space. Each groove extends at least partially along the substrate and has a base and a top. The manufacturing method further includes processing an intermediate surface of the component to plastically deform the surface adjacent at least one edge of a respective groove, such that the distance across the top of the groove is reduced. Another manufacturing method is provided and includes processing an intermediate surface of the component to facet the intermediate surface in the vicinity of the groove.
    Type: Application
    Filed: September 23, 2011
    Publication date: March 28, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ronald Scott Bunker, Scott Andrew Weaver, Don Mark Lipkin
  • Publication number: 20130078428
    Abstract: A manufacturing method includes forming one or more grooves in a component that comprises a substrate with an outer surface. The substrate has at least one interior space. Each groove extends at least partially along the substrate and has a base and a top. The manufacturing method further includes applying a structural coating on at least a portion of the substrate and processing at least a portion of the surface of the structural coating so as to plastically deform the structural coating at least in the vicinity of the top of a respective groove, such that a gap across the top of the groove is reduced. A component is also disclosed and includes a structural coating disposed on at least a portion of a substrate, where the surface of the structural coating is faceted in the vicinity of the respective groove.
    Type: Application
    Filed: August 27, 2012
    Publication date: March 28, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ronald Scott Bunker, Scott Andrew Weaver, Don Mark Lipkin, John Brian McDermott
  • Patent number: 8387561
    Abstract: A method and apparatus for depositing a coating material on a surface of a substrate by an ion plasma deposition process using a hollow cathode is disclosed. The cathode may be a substantially cylindrical hollow cathode. A plasma arc is formed on the outer circumference of the cathode to remove coating material from the cathode, which is then deposited on a surface of a substrate. An internal arc drive magnet is contained within the hollow bore of the cathode and cooling is provided to the magnet during operation.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: March 5, 2013
    Assignee: General Electric Company
    Inventors: Scott Andrew Weaver, William Thomas Carter, Paul Mario Marruso
  • Publication number: 20120276308
    Abstract: Methods of fabricating coated components using multiple types of fillers are provided. One method comprises forming one or more grooves in an outer surface of a substrate. Each groove has a base and extends at least partially along the outer surface of the substrate. The method further includes disposing a sacrificial filler within the groove(s), disposing a permanent filler over the sacrificial filler, disposing a coating over at least a portion of the substrate and over the permanent filler, and removing the first sacrificial filler from the groove(s), to define one or more channels for cooling the component. A component with a permanent filler is also provided.
    Type: Application
    Filed: April 27, 2011
    Publication date: November 1, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Raul Basilio Rebak, Renee Bushey Rohling, Scott Andrew Weaver, Ronald Scott Bunker, Don Mark Lipkin, John Brian McDermott, Lawrence Bernard Kool, Ann Melinda Ritter
  • Publication number: 20120164510
    Abstract: A method of sealing a ceramic component to a metal component for a metal halide battery is provided. The method involves the steps of coating a portion of the ceramic component with a metallic coating, and then bonding the coated ceramic component to the metal component. The metallic coating includes a reactive metal. A sealing structure formed by using such a method is also presented.
    Type: Application
    Filed: December 22, 2010
    Publication date: June 28, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Scott Andrew Weaver, Don Mark Lipkin, Radhakrishna Badekila Bhat, Andrew Joseph Detor, Brian William Cerniglia