Patents by Inventor Scott B. Fiveland

Scott B. Fiveland has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9127615
    Abstract: A control system (12) for an engine (10) having a combustion chamber (22) is disclosed. The control system may have a fuel injector (40) configured to selectively inject fuel into the combustion chamber, and a controller (54) in communication with the fuel injector. The controller may be configured to activate the fuel injector during a first compression stroke to initiate fuel injection in an amount and at a timing that results in a stratified lean air/fuel mixture within the combustion chamber during a first combustion event of a six-stroke cycle. The controller may also be configured to activate the fuel injector during a first power stroke to initiate fuel injection in an amount and at a timing that results in a homogenous lean air/fuel mixture within the combustion chamber during a second combustion event of the same six-stroke cycle.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: September 8, 2015
    Assignee: Caterpillar Inc.
    Inventors: Scott B. Fiveland, William H. Lane
  • Patent number: 9057324
    Abstract: A six-stroke engine system including an engine with a combustion chamber including an exhaust valve that expels exhaust gasses, a blowdown exhaust valve that expel blowdown exhaust gasses during recompression, and an intake valve and a blowdown compressor intake valve that introduce air. An exhaust line directs exhaust gasses to drive a turbine, which drives a compressor. An intake line receives compressed air from the compressor and directs it into the combustion chamber through the intake valve. A blowdown exhaust line, separate from the exhaust line, directs blowdown exhaust gasses from the blowdown exhaust valve to drive the blowdown turbine, which drives a blowdown compressor. A blowdown compressor line directs compressed air from the intake line into the blowdown compressor, and directs super-compressed air from the blowdown compressor through the blowdown compressor intake valve during recompression.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: June 16, 2015
    Assignee: Caterpillar Inc.
    Inventors: D. Ryan Williams, Scott B. Fiveland
  • Patent number: 9046068
    Abstract: A fuel system for an engine having a cylinder liner is disclosed. The fuel system may have a gaseous fuel injector having a nozzle located at an air intake port of the cylinder liner. The gaseous fuel injector may be configured to inject gaseous fuel radially into the cylinder liner at an oblique vertical angle with respect to a plane perpendicular to an axis of the cylinder liner. The fuel system may also have a liquid fuel injector configured to inject liquid fuel axially into the cylinder liner.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: June 2, 2015
    Assignee: Electro-Motive Diesel, Inc.
    Inventors: Scott B. Fiveland, David T. Montgomery
  • Patent number: 8978601
    Abstract: A six-stroke engine system including an engine with a combustion chamber including an exhaust valve that expels exhaust gasses and a blowdown exhaust valve that expels blowdown exhaust gasses during recompression. An exhaust line communicates with the engine to direct exhaust gasses out of the combustion chamber, and a blowdown exhaust line communicates with the engine to direct blowdown exhaust gasses out of the combustion chamber and into the exhaust line. The blowdown exhaust gasses are expelled through the blowdown exhaust valve during the recompression stroke, and the exhaust gasses are expelled through the exhaust valve during the exhaust stroke.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: March 17, 2015
    Assignee: Caterpillar Inc.
    Inventors: D. Ryan Williams, Scott B. Fiveland
  • Patent number: 8978602
    Abstract: An engine combustion cylinder is fluidly connectable to an intake system through an intake valve and to an exhaust system through an exhaust valve. A valve activation system is to activate the intake valve and the exhaust valve. The valve activation system is responsive to a controller providing command signals to the valve activation system such that, when the engine operates in a six-stroke combustion cycle, the intake valve is opened during a recompression stroke to allow a portion of the products from the first combustion stroke to exit the combustion cylinder and enter into the intake system. This may be done to match the power densities of the first and second power strokes of the piston.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: March 17, 2015
    Assignee: Caterpillar Inc.
    Inventors: D. Ryan Williams, Scott B. Fiveland
  • Patent number: 8978603
    Abstract: An engine combustion cylinder is fluidly connectable to an intake system through an intake valve and to an exhaust system through an exhaust valve. A valve activation system is to activate the intake valve and the exhaust valve. The valve activation system is responsive to a controller providing command signals to the valve activation system such that, when the engine operates in a six-stroke combustion cycle, the intake valve is opened during a recompression stroke to allow a portion of the products from the first combustion stroke to exit the combustion cylinder and enter into the intake system.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: March 17, 2015
    Assignee: Caterpillar Inc.
    Inventors: D. Ryan Williams, Scott B. Fiveland
  • Patent number: 8943823
    Abstract: A fluid handling system for a use with an engine is provided. The fluid-handling system may have a first turbine connected to receive a portion of an exhaust flow from the engine, a first compressor driven by the first turbine to pressurize an airflow, and a heat exchanger configured to receive a remaining portion of the exhaust flow from the engine and the airflow from the first compressor. The fluid-handling system may also have a second turbine connected to receive the airflow from the heat exchanger, and a generator driven by the second turbine to generate power.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: February 3, 2015
    Assignee: Caterpillar Inc.
    Inventor: Scott B. Fiveland
  • Patent number: 8925526
    Abstract: A method of operating a combustion engine including causing an intake stroke in a first cylinder, causing a compression stroke in the first cylinder thereby creating pressurized fluid and releasing pressurized fluid from the first cylinder. The method further includes cooling the released fluid, directing the cooled fluid into a second cylinder over a first period of time and injecting fuel into the second cylinder over a second period of time whereby the first and second periods of time at least partially overlap.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: January 6, 2015
    Assignee: Caterpillar Inc.
    Inventors: Jonathan W. Anders, Scott B. Fiveland, Carl-Anders Hergart
  • Patent number: 8904981
    Abstract: An internal combustion engine includes a cylinder that is connectable to an intake manifold through an intake valve, to an exhaust manifold through an exhaust valve, and to a transfer manifold through transfer and combustion valves. A fuel injector associated with the cylinder is adapted to provide fuel to the cylinder. During operation, the cylinder performs an intake stroke, followed by a compression stroke. A compressed charge from the cylinder passes to and is collected in the transfer manifold through the transfer valve. The cylinder is filled by a compressed charge from the transfer manifold through the combustion valve at the same time as the fuel injector provides fuel. The cylinder then undergoes combustion and exhaust strokes. In this way, cylinder operation alternates between combustor and compressor split combustion modes.
    Type: Grant
    Filed: May 8, 2012
    Date of Patent: December 9, 2014
    Assignee: Caterpillar Inc.
    Inventor: Scott B. Fiveland
  • Publication number: 20140209066
    Abstract: A control system for a dual-fuel engine is disclosed. The control system may have a gaseous fuel injector having a nozzle located at a first air intake port of a cylinder of the engine and configured to inject a variable amount of gaseous fuel radially into the cylinder based on at least one of a load and speed of the engine. The control system may also have a liquid fuel injector configured to inject a fixed amount of liquid fuel axially into the cylinder based on the at least one of the load and speed of the engine. The control system may additionally have a regulator configured to selectively adjust a flow of gaseous fuel to the gaseous fuel injector and at least one sensor configured to generate a signal indicative of a performance parameter of the engine. The control system may also have a controller in communication with the regulator and the at least one sensor. The controller may be configured to selectively cause the regulator to adjust the flow of gaseous fuel based on the signal.
    Type: Application
    Filed: January 31, 2013
    Publication date: July 31, 2014
    Applicant: ELECTRO-MOTIVE DIESEL, INC.
    Inventors: Scott B. Fiveland, Deep Bandyopadhyay, Edward J. Cryer
  • Publication number: 20140174709
    Abstract: A method of cooling inlet air to an engine includes pressurizing the inlet air during a first compression stage, and further pressurizing the inlet air during a second compression stage. Heat is transferred from the inlet air to a primary coolant liquid between the first compression stage and the second compression stage, and heat is transferred selectively, variably, or selectively and variably from the primary coolant liquid to a fuel of the engine.
    Type: Application
    Filed: December 20, 2012
    Publication date: June 26, 2014
    Applicant: Caterpillar Inc.
    Inventors: Scott B. Fiveland, James J. Callas
  • Publication number: 20140158068
    Abstract: A six-stroke engine system including an engine with a combustion chamber including an exhaust valve that expels exhaust gasses and a blowdown exhaust valve that expels blowdown exhaust gasses during recompression. An exhaust line communicates with the engine to direct exhaust gasses out of the combustion chamber, and a blowdown exhaust line communicates with the engine to direct blowdown exhaust gasses out of the combustion chamber and into the exhaust line. The blowdown exhaust gasses are expelled through the blowdown exhaust valve during the recompression stroke, and the exhaust gasses are expelled through the exhaust valve during the exhaust stroke.
    Type: Application
    Filed: December 12, 2012
    Publication date: June 12, 2014
    Applicant: CATERPILLAR INC.
    Inventors: D. Ryan Williams, Scott B. Fiveland
  • Publication number: 20140158085
    Abstract: An internal combustion engine operates on a six-stroke combustion cycle including a first compression stroke, a first power stroke, a second compression stroke, and a second power stroke. A first preliminary fuel charge is introduced to a combustion chamber of the engine during the first compression stroke. Subsequently, a first main fuel charge is introduced and the first preliminary and first main fuel charges are combusted to power the first power stroke. During the second compression stroke, a second preliminary fuel charge is introduced to the combustion chamber. Subsequently, a second main fuel charge is introduced during one of the second compression stroke and second power stroke. The second preliminary and second main fuel charges are combusted to power the second power stroke.
    Type: Application
    Filed: December 12, 2012
    Publication date: June 12, 2014
    Applicant: CATERPILLAR INC.
    Inventors: D. Ryan Williams, Scott B. Fiveland
  • Publication number: 20140158087
    Abstract: An internal combustion engine operates on a six-stroke combustion cycle including a first compression stroke, a first power stroke, a second compression stroke, and a second power stroke. A first fuel charge is introduced to a combustion chamber of the engine at a first fuel rate during the first compression and/or first power stroke to produce lean exhaust gasses. A second fuel charge is also introduced to the combustion chamber during the second compression and/or second power stroke to normally produce lean exhaust gasses. Periodically, the second fuel charge can be increased to a second fuel rate to produce stoichiometric rich exhaust gasses. A lean nitrogen oxide trap can be disposed in an exhaust system associated with the engine to temporarily trap nitrogen oxides. Once saturated, the LNT can be periodically regenerated by production of the rich exhaust gasses.
    Type: Application
    Filed: December 12, 2012
    Publication date: June 12, 2014
    Applicant: CATERPILLAR INC.
    Inventors: Ronald Silver, Scott B. Fiveland, D. Ryan Williams
  • Publication number: 20140158070
    Abstract: An engine combustion cylinder is fluidly connectable to an intake system through an intake valve and to an exhaust system through an exhaust valve. A valve activation system is to activate the intake valve and the exhaust valve. The valve activation system is responsive to a controller providing command signals to the valve activation system such that, when the engine operates in a six-stroke combustion cycle, the intake valve is opened during a recompression stroke to allow a portion of the products from the first combustion stroke to exit the combustion cylinder and enter into the intake system. This may be done to match the power densities of the first and second power strokes of the piston.
    Type: Application
    Filed: December 12, 2012
    Publication date: June 12, 2014
    Applicant: CATERPILLAR INC.
    Inventors: D. Ryan Williams, Scott B. Fiveland
  • Publication number: 20140158069
    Abstract: A six-stroke engine system including an engine with a combustion chamber including an exhaust valve that expels exhaust gasses, a blowdown exhaust valve that expel blowdown exhaust gasses during recompression, and an intake valve and a blowdown compressor intake valve that introduce air. An exhaust line directs exhaust gasses to drive a turbine, which drives a compressor. An intake line receives compressed air from the compressor and directs it into the combustion chamber through the intake valve. A blowdown exhaust line, separate from the exhaust line, directs blowdown exhaust gasses from the blowdown exhaust valve to drive the blowdown turbine, which drives a blowdown compressor. A blowdown compressor line directs compressed air from the intake line into the blowdown compressor, and directs super-compressed air from the blowdown compressor through the blowdown compressor intake valve during recompression.
    Type: Application
    Filed: December 12, 2012
    Publication date: June 12, 2014
    Applicant: CATERPILLAR INC.
    Inventors: D. Ryan Williams, Scott B. Fiveland
  • Publication number: 20140158072
    Abstract: An engine combustion cylinder is fluidly connectable to an intake system through an intake valve and to an exhaust system through an exhaust valve. A valve activation system is to activate the intake valve and the exhaust valve. The valve activation system is responsive to a controller providing command signals to the valve activation system such that, when the engine operates in a six-stroke combustion cycle, the intake valve is opened during a recompression stroke to allow a portion of the products from the first combustion stroke to exit the combustion cylinder and enter into the intake system.
    Type: Application
    Filed: December 12, 2012
    Publication date: June 12, 2014
    Applicant: CATERPILLAR INC.
    Inventors: D. Ryan Williams, Scott B. Fiveland
  • Publication number: 20140157758
    Abstract: A method and system of operating an internal combustion engine on a six-stroke cycle utilizes an after-treatment system to reduce emissions such as nitrogen oxides. The method and system introduce a first fuel charge to a combustion chamber and combusts the first fuel charge to produce a first stoichiometric lean condition. The method and system next introduce a second fuel charge and combust the second fuel charge to produce a second stoichiometric lean conditions. The exhaust gasses are then directed to a selective catalytic reduction catalyst with a reductant agent to reduce the nitrogen oxides to nitrogen and water.
    Type: Application
    Filed: December 12, 2012
    Publication date: June 12, 2014
    Applicant: CATERPILLAR INC.
    Inventors: Ronald Silver, Scott B. Fiveland, D. Ryan Williams
  • Publication number: 20140158100
    Abstract: An engine combustion cylinder is fluidly connectable to an intake system through an intake valve and to an exhaust system through an exhaust valve. A valve activation system is to activate the intake valve and the exhaust valve. The valve activation system is responsive to a controller providing command signals to the valve activation system such that, when the engine operates in a six-stroke combustion cycle, the intake valve is opened during a recompression stroke to allow a portion of the products from the first combustion stroke to exit the combustion cylinder and enter into the intake system.
    Type: Application
    Filed: December 12, 2012
    Publication date: June 12, 2014
    Applicant: CATERPILLAR INC.
    Inventors: D. Ryan Williams, Scott B. Fiveland
  • Publication number: 20140158084
    Abstract: A six-stroke engine system including an engine with a combustion chamber including an exhaust valve that expels exhaust gasses during an exhaust stroke, and a blowdown exhaust valve that expels blowdown exhaust gasses during recompression. An intake line directs air into the combustion chamber, and an exhaust line directs exhaust gasses from combustion chamber. A blowdown exhaust line directs blowdown exhaust gasses out of the combustion chamber and into the intake line. The blowdown exhaust gasses are expelled through the blowdown exhaust valve during recompression, and exhaust gasses are expelled through the exhaust valve during the exhaust stroke.
    Type: Application
    Filed: December 12, 2012
    Publication date: June 12, 2014
    Applicant: CATERPILLAR INC.
    Inventors: Scott B. Fiveland, D. Ryan Williams