Patents by Inventor Scott DeBoer

Scott DeBoer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050009361
    Abstract: A method of forming a high dielectric oxide film conventionally formed using a post formation oxygen anneal to reduce the leakage current of such film includes forming a high dielectric oxide film on a surface. The high dielectric oxide film has a dielectric constant greater than about 4 and includes a plurality of oxygen vacancies present during the formation of the film. The high dielectric oxide film is exposed during the formation thereof to an amount of atomic oxygen sufficient for reducing the number of oxygen vacancies and eliminating the post formation oxygen anneal of the high dielectric oxide film. Further, the amount of atomic oxygen used in the formation method may be controlled as a function of the amount of oxygen incorporated into the high dielectric oxide film during the formation thereof or be controlled as a function of the concentration of atomic oxygen in a process chamber in which the high dielectric oxide film is being formed.
    Type: Application
    Filed: August 3, 2004
    Publication date: January 13, 2005
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Scott DeBoer, Randhir Thakur
  • Patent number: 6827790
    Abstract: a method and apparatus for preventing N2O from becoming super critical during a high pressure oxidation stage within a high pressure oxidation furnace are disclosed. The method and apparatus utilize a catalyst to catalytically disassociate N2O as it enters the high pressure oxidation furnace. This catalyst is used in an environment of between five (5) atmospheres to twenty-five (25) atmospheres N2O and a temperature range of 600° to 750° C., which are the conditions that lead to the N2O going super critical. By preventing the N2O from becoming super critical, the reaction is controlled that prevents both temperature and pressure spikes. The catalyst can be selected from the group of noble transition metals and their oxides. This group can comprise palladium, platinum, rhodium, nickel, silver, and gold.
    Type: Grant
    Filed: March 2, 2001
    Date of Patent: December 7, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Daniel Gealy, Dave Chapek, Scott DeBoer, Husam N. Al-Shareef, Randhir Thakur
  • Publication number: 20040238845
    Abstract: Methods and apparatus for forming word line stacks comprise forming a thin nitride layer coupled between a bottom silicon layer and a conductor layer. In a further embodiment, a diffusion barrier layer is coupled between the thin nitride layer and the bottom silicon layer. The thin nitride layer is formed by annealing a silicon oxide film in a nitrogen-containing ambient.
    Type: Application
    Filed: June 30, 2004
    Publication date: December 2, 2004
    Applicant: Micron Technology. Inc.
    Inventors: Yongjun Hu, Randhir P.S. Thakur, Scott DeBoer
  • Patent number: 6798026
    Abstract: Methods and apparatus for forming word line stacks comprise forming a thin nitride layer coupled between a bottom silicon layer and a conductor layer. In a further embodiment, a diffusion barrier layer is coupled between the thin nitride layer and the bottom silicon layer. The thin nitride layer is formed by annealing a silicon oxide film in a nitrogen-containing ambient.
    Type: Grant
    Filed: August 29, 2002
    Date of Patent: September 28, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Yongjun Hu, Randhir P. S. Thakur, Scott DeBoer
  • Publication number: 20040185677
    Abstract: A method and apparatus for preventing N2O from becoming super critical during a high pressure oxidation stage within a high pressure oxidation furnace are disclosed. The method and apparatus utilize a catalyst to catalytically disassociate N2O as it enters the high pressure oxidation furnace. This catalyst is used in an environment of between five atmospheres and 25 atmospheres N2O and a temperature range of 600° to 750° C., which are the conditions that lead to the N2O going super critical. By preventing the N2O from becoming super critical, the reaction is controlled that prevents both temperature and pressure spikes. The catalyst can be selected from the group of noble transition metals and their oxides. This group can comprise palladium, platinum, iridium, rhodium, nickel, silver, and gold.
    Type: Application
    Filed: July 22, 2003
    Publication date: September 23, 2004
    Inventors: F. Daniel Gealy, Dave Chapek, Scott DeBoer, Husam N. Al-Shareef, Randhir Thakur
  • Patent number: 6673689
    Abstract: A high surface area capacitor comprising a double metal layer of an electrode metal and a barrier material deposited on hemispherical grain (HSG) silicon and a high dielectric constant (HDC) material deposited over the double metal layer. An upper cell plate electrode is deposited over the HDC material. The double metal layer preferably comprises one noble metal for the electrode metal and an oxidizable metal for the barrier material. The noble metal alone would normally allow oxygen to diffuse into and oxidize any adhesion layer and/or undesirably oxidize any silicon-containing material during the deposition of the HDC material. The barrier metal is used to form a conducting oxide layer or a conducting layer which stops the oxygen diffusion. The HSG polysilicon provides a surface roughness that boosts cell capacitance. The HDC material is also used to boost cell capacitance.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: January 6, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Husam N. Al-Shareef, Scott DeBoer, Randhir Thakur
  • Patent number: 6596651
    Abstract: A method and apparatus for preventing N2O from becoming super critical during a high pressure oxidation stage within a high pressure oxidation furnace are disclosed. The method and apparatus utilize a catalyst to catalytically disassociate N2O as it enters the high pressure oxidation furnace. This catalyst is used in an environment of between five atmospheres and 25 atmospheres N2O and a temperature range of 600° to 750° C., which are the conditions that lead to the N2O going super critical. By preventing the N2O from becoming super critical, the reaction is controlled that prevents both temperature and pressure spikes. The catalyst can be selected from the group of noble transition metals and their oxides. This group can comprise palladium, platinum, iridium, rhodium, nickel, silver, and gold.
    Type: Grant
    Filed: August 5, 2002
    Date of Patent: July 22, 2003
    Assignee: Micron Technology, Inc.
    Inventors: F. Daniel Gealy, Scott DeBoer, Dave Chapek, Husam N. Al-Shareef, Randhir Thakur
  • Patent number: 6525384
    Abstract: Methods and apparatus for forming word line stacks comprise forming a thin nitride layer coupled between a bottom silicon layer and a conductor layer. In a further embodiment, a diffusion barrier layer is coupled between the thin nitride layer and the bottom silicon layer. The thin nitride layer is formed by annealing a silicon oxide film in a nitrogen-containing ambient.
    Type: Grant
    Filed: August 11, 1998
    Date of Patent: February 25, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Yongjun Hu, Randhir P. S. Thakur, Scott DeBoer
  • Publication number: 20030001212
    Abstract: Methods and apparatus for forming word line stacks comprise forming a thin nitride layer coupled between a bottom silicon layer and a conductor layer. In a further embodiment, a diffusion barrier layer is coupled between the thin nitride layer and the bottom silicon layer. The thin nitride layer is formed by annealing a silicon oxide film in a nitrogen-containing ambient.
    Type: Application
    Filed: August 29, 2002
    Publication date: January 2, 2003
    Applicant: Micron Technology, Inc.
    Inventors: Yongjun Hu, Randhir P.S. Thakur, Scott DeBoer
  • Publication number: 20020192978
    Abstract: A method and apparatus for preventing N2O from becoming super critical during a high pressure oxidation stage within a high pressure oxidation furnace are disclosed. The method and apparatus utilize a catalyst to catalytically disassociate N2O as it enters the high pressure oxidation furnace. This catalyst is used in an environment of between five atmospheres and 25 atmospheres N2O and a temperature range of 600° to 750° C., which are the conditions that lead to the N2O going super critical. By preventing the N2O from becoming super critical, the reaction is controlled that prevents both temperature and pressure spikes. The catalyst can be selected from the group of noble transition metals and their oxides. This group can comprise palladium, platinum, iridium, rhodium, nickel, silver, and gold.
    Type: Application
    Filed: August 5, 2002
    Publication date: December 19, 2002
    Inventors: F. Daniel Gealy, Scott DeBoer, Dave Chapek, Husam N. Al-Shareef, Randhir Thakur
  • Publication number: 20020155658
    Abstract: A high surface area capacitor comprising a double metal layer of an electrode metal and a barrier material deposited on hemispherical grain (HSG) silicon and a high dielectric constant (HDC) material deposited over the double metal layer. An upper cell plate electrode is deposited over the HDC material. The double metal layer preferably comprises one noble metal for the electrode metal and an oxidizable metal for the barrier material. The noble metal alone would normally allow oxygen to diffuse into and oxidize any adhesion layer and/or undesirably oxidize any silicon-containing material during the deposition of the HDC material. The barrier metal is used to form a conducting oxide layer or a conducting layer which stops the oxygen diffusion. The HSG polysilicon provides a surface roughness that boosts cell capacitance. The HDC material is also used to boost cell capacitance.
    Type: Application
    Filed: May 30, 2002
    Publication date: October 24, 2002
    Inventors: Husam N. Al-Shareef, Scott DeBoer, Randhir Thakur
  • Patent number: 6436818
    Abstract: Methods and apparatus for forming word line stacks comprise one, or a combination of the following: a silicon diffusion barrier layer, doped with oxygen or nitrogen, coupled between a bottom silicon layer and a conductor layer; an amorphous silicon diffusion barrier coupled between a polysilicon layer and a conductor layer; a thin nitride layer coupled between a bottom silicon layer and a titanium silicide conductor layer, and a bottom silicon layer coupled to a conductor layer, which comprises C54-titanium silicide. Word line stacks formed by the methods of the invention are used in sub-0.25 micron line width applications and have a lower resistivity and improved thermal stability.
    Type: Grant
    Filed: December 6, 1999
    Date of Patent: August 20, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Yongjun Hu, Pai-Hung Pan, Er-Xuan Ping, Randhir P. S. Thakur, Scott DeBoer
  • Patent number: 6423649
    Abstract: A method and apparatus for preventing N2O from becoming super critical during a high pressure oxidation stage within a high pressure oxidation furnace are disclosed. The method and apparatus utilize a catalyst to catalytically disassociate N2O as it enters the high pressure oxidation furnace. This catalyst is used in an environment of between five atmospheres and 25 atmospheres N2O and a temperature range of 600° to 750° C., which are the conditions that lead to the N2O going super critical. By preventing the N2O from becoming super critical, the reaction is controlled that prevents both temperature and pressure spikes. The catalyst can be selected from the group of noble transition metals and their oxides. This group can comprise palladium, platinum, iridium, rhodium, nickel, silver, and gold.
    Type: Grant
    Filed: July 20, 2001
    Date of Patent: July 23, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Daniel Gealy, Dave Chapek, Scott DeBoer, Husam N. Al-Shareef, Randhir Thakur
  • Patent number: 6399459
    Abstract: A high surface area capacitor comprising a double metal layer (an electrode metal and barrier material) deposited on hemispherical grain (HSG) silicon, wherein a high dielectric constant (HDC) material is deposited over the double metal layer. The high surface area capacitor is complete with an upper cell plate electrode deposited over the HDC material. The double metal layer preferably comprises one noble metal, such as platinum or palladium, for the electrode metal and an oxidizable metal, such as ruthenium, iridium, or molybdenum, for the barrier material. The noble metal, such as platinum metal, alone would normally allow oxygen to diffuse into and oxidize any adhesion layer (making the adhesion layer less conductive) and/or undesirably oxidize any silicon-containing material during the deposition of the HDC material. Thus, the barrier metal is used to form a conducting oxide layer or a conducting layer which stops the oxygen diffusion.
    Type: Grant
    Filed: June 27, 2001
    Date of Patent: June 4, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Husam N. Al-Shareef, Scott DeBoer, Randhir Thakur
  • Publication number: 20020008292
    Abstract: Methods and apparatus for forming word line stacks comprise forming a thin nitride layer coupled between a bottom silicon layer and a conductor layer. In a further embodiment, a diffusion barrier layer is coupled between the thin nitride layer and the bottom silicon layer. The thin nitride layer is formed by annealing a silicon oxide film in a nitrogen-containing ambient.
    Type: Application
    Filed: August 11, 1998
    Publication date: January 24, 2002
    Inventors: YONGIUN HU, RANDHIR P S THAKUR, SCOTT DEBOER
  • Publication number: 20010044219
    Abstract: A method and apparatus for preventing N2O from becoming super critical during a high pressure oxidation stage within a high pressure oxidation furnace are disclosed. The method and apparatus utilize a catalyst to catalytically disassociate N2O as it enters the high pressure oxidation furnace. This catalyst is used in an environment of between five atmospheres and 25 atmospheres N2O and a temperature range of 600° to 750° C., which are the conditions that lead to the N2O going super critical. By preventing the N2O from becoming super critical, the reaction is controlled that prevents both temperature and pressure spikes. The catalyst can be selected from the group of noble transition metals and their oxides. This group can comprise palladium, platinum, iridium, rhodium, nickel, silver, and gold.
    Type: Application
    Filed: July 20, 2001
    Publication date: November 22, 2001
    Inventors: F. Daniel Gealy, Dave Chapek, Scott DeBoer, Husam N. Al-Shareef, Randhir Thakur
  • Publication number: 20010039097
    Abstract: A high surface area capacitor comprising a double metal layer (an electrode metal and barrier material) deposited on hemispherical grain (HSG) silicon, wherein a high dielectric constant (HDC) material is deposited over the double metal layer. The high surface area capacitor is complete with an upper cell plate electrode deposited over the HDC material. The double metal layer preferably comprises one noble metal, such as platinum or palladium, for the electrode metal and an oxidizable metal, such as ruthenium, iridium, or molybdenum, for the barrier material. The noble metal, such as platinum metal, alone would normally allow oxygen to diffuse into and oxidize any adhesion layer (making the adhesion layer less conductive) and/or undesirably oxidize any silicon-containing material during the deposition of the HDC material. Thus, the barrier metal is used to form a conducting oxide layer or a conducting layer which stops the oxygen diffusion.
    Type: Application
    Filed: June 27, 2001
    Publication date: November 8, 2001
    Inventors: Husam N. Al-Shareef, Scott DeBoer, Randhir Thakur
  • Patent number: 6291364
    Abstract: A method and apparatus for preventing N2O from becoming super critical during a high pressure oxidation stage within a high pressure oxidation furnace are disclosed. The method and apparatus utilize a catalyst to catalytically disassociate N2O as it enters the high pressure oxidation furnace. This catalyst is used in an environment of between five atmosphere to 25 atmosphere N2O and a temperature range of 600° to 750° C., which are the conditions that lead to the N2O going super critical. By preventing the N2O from becoming super critical, the reaction is controlled that prevents both temperature and pressure spikes. The catalyst can be selected from the group of noble transition metals and their oxides. This group can comprise palladium, platinum, iridium, rhodium, nickel, silver, and gold.
    Type: Grant
    Filed: August 31, 1999
    Date of Patent: September 18, 2001
    Assignee: Micron Technology, Inc.
    Inventors: F. Daniel Gealy, Dave Chapek, Scott DeBoer, Husam N. Al-Shareef, Randhir Thakur
  • Patent number: 6281543
    Abstract: A high surface area capacitor comprising a double metal layer (an electrode metal and barrier material) deposited on hemispherical grain (HSG) silicon, wherein a high dielectric constant (HDC) material is deposited over the double metal layer. The high surface area capacitor is complete with an upper cell plate electrode deposited over the HDC material. The double metal layer is preferably comprises one noble metal, such as platinum or palladium, for the electrode metal and an oxidizable metal, such as ruthenium, iridium, or molybdenum, for the barrier material. The noble metal, such as platinum metal, alone would normally allow oxygen diffusion into and oxidize any adhesion layer (making the adhesion layer less conductive) and/or undesirably oxidize any silicon-containing material during the deposition of the HDC material. Thus, the barrier metal is used to form a conducting oxide layer or a conducting layer which stops the oxygen diffusion.
    Type: Grant
    Filed: August 31, 1999
    Date of Patent: August 28, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Husam N. Al-Shareef, Scott DeBoer, Randhir Thakur
  • Publication number: 20010008750
    Abstract: A method and apparatus for preventing N2O from becoming super critical during a high pressure oxidation stage within a high pressure oxidation furnace is disclosed. The method and apparatus utilize a catalyst to catalytically disassociate N2O as it enters the high pressure oxidation furnace. This catalyst is used in an environment of between five atmosphere to 25 atmosphere N2O and a temperature range of 600° to 750° C., which are the conditions that lead to the N2O going super critical. By preventing the N2O from becoming super critical, the reaction is controlled that prevents both temperature and pressure spikes. The catalyst can be selected from the group of noble transition metals and their oxides. This group can comprise palladium, platinum, iridium, rhodium, nickel, silver, and gold.
    Type: Application
    Filed: March 2, 2001
    Publication date: July 19, 2001
    Inventors: Daniel Gealy, Dave Chapek, Scott DeBoer, Husam N. Al-Shareef, Randhir Thakur