Patents by Inventor Scott E. Thompson

Scott E. Thompson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8541824
    Abstract: Some structures and methods to reduce power consumption in devices can be implemented largely by reusing existing bulk CMOS process flows and manufacturing technology, allowing the semiconductor industry as well as the broader electronics industry to avoid a costly and risky switch to alternative technologies. Some of the structures and methods relate to a Deeply Depleted Channel (DDC) design, allowing CMOS based devices to have a reduced ?VT compared to conventional bulk CMOS and can allow the threshold voltage VT of FETs having dopants in the channel region to be set much more precisely. The DDC design also can have a strong body effect compared to conventional bulk CMOS transistors, which can allow for significant dynamic control of power consumption in DDC transistors. Additional structures, configurations, and methods presented herein can be used alone or in conjunction with the DDC to yield additional and different benefits.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: September 24, 2013
    Assignee: SuVolta, Inc.
    Inventors: Scott E. Thompson, Damodar R. Thummalapally
  • Patent number: 8530286
    Abstract: A structure and method of fabrication thereof relate to a Deeply Depleted Channel (DDC) design, allowing CMOS based devices to have a reduced ?VT compared to conventional bulk CMOS and can allow the threshold voltage VT of FETs having dopants in the channel region to be set much more precisely. The DDC design also can have a strong body effect compared to conventional bulk CMOS transistors, which can allow for significant dynamic control of power consumption in DDC transistors. The semiconductor structure includes an analog device and a digital device each having an epitaxial channel layer where a single gate oxidation layer is on the epitaxial channel layer of NMOS and PMOS transistor elements of the digital device and one of a double and triple gate oxidation layer is on the epitaxial channel layer of NMOS and PMOS transistor elements of the analog device.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: September 10, 2013
    Assignee: SuVolta, Inc.
    Inventors: Lucian Shifren, Pushkar Ranade, Scott E. Thompson, Sachin R. Sonkusale, Weimin Zhang
  • Publication number: 20130181298
    Abstract: An advanced transistor with punch through suppression includes a gate with length Lg, a well doped to have a first concentration of a dopant, and a screening region positioned under the gate and having a second concentration of dopant. The second concentration of dopant may be greater than 5×1018 dopant atoms per cm3. At least one punch through suppression region is disposed under the gate between the screening region and the well. The punch through suppression region has a third concentration of a dopant intermediate between the first concentration and the second concentration of dopant. A bias voltage may be applied to the well region to adjust a threshold voltage of the transistor.
    Type: Application
    Filed: March 6, 2013
    Publication date: July 18, 2013
    Inventors: Lucian Shifren, Pushkar Ranade, Paul E. Gregory, Sachin R. Sonkusale, Weimin Zhang, Scott E. Thompson
  • Publication number: 20130154739
    Abstract: Circuits are disclosed that may include a plurality of transistors having controllable current paths coupled between at least a first and second node, the transistors configured to generate an analog electrical output signal in response to an analog input value; wherein at least one of the transistors has a deeply depleted channel formed below its gate that includes a substantially undoped channel region formed over a relatively highly doped screen layer formed over a doped body region.
    Type: Application
    Filed: February 19, 2013
    Publication date: June 20, 2013
    Inventors: Lawrence T. Clark, Scott E. Thompson
  • Patent number: 8461875
    Abstract: Digital circuits are disclosed that may include multiple transistors having controllable current paths coupled between first and second logic nodes. One or more of the transistors may have a deeply depleted channel formed below its gate that includes a substantially undoped channel region formed over a relatively highly doped screen layer formed over a doped body region. Resulting reductions in threshold voltage variation may improve digital circuit performance. Logic circuit, static random access memory (SRAM) cell, and passgate embodiments are disclosed.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: June 11, 2013
    Assignee: SuVolta, Inc.
    Inventors: Scott E. Thompson, Lawrence T. Clark
  • Patent number: 8421162
    Abstract: An advanced transistor with punch through suppression includes a gate with length Lg, a well doped to have a first concentration of a dopant, and a screening region positioned under the gate and having a second concentration of dopant. The second concentration of dopant may be greater than 5×1018 dopant atoms per cm3. At least one punch through suppression region is disposed under the gate between the screening region and the well. The punch through suppression region has a third concentration of a dopant intermediate between the first concentration and the second concentration of dopant. A bias voltage may be applied to the well region to adjust a threshold voltage of the transistor.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: April 16, 2013
    Assignee: Suvolta, Inc.
    Inventors: Lucian Shifren, Pushkar Ranade, Paul E. Gregory, Sachin R. Sonkusale, Weimin Zhang, Scott E. Thompson
  • Patent number: 8400219
    Abstract: Circuits are disclosed that may include a plurality of transistors having controllable current paths coupled between at least a first and second node, the transistors configured to generate an analog electrical output signal in response to an analog input value; wherein at least one of the transistors has a deeply depleted channel formed below its gate that includes a substantially undoped channel region formed over a relatively highly doped screen layer formed over a doped body region.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: March 19, 2013
    Assignee: Suvolta, Inc.
    Inventors: Lawrence T. Clark, Scott E. Thompson
  • Publication number: 20130020638
    Abstract: Some structures and methods to reduce power consumption in devices can be implemented largely by reusing existing bulk CMOS process flows and manufacturing technology, allowing the semiconductor industry as well as the broader electronics industry to avoid a costly and risky switch to alternative technologies. Some of the structures and methods relate to a Deeply Depleted Channel (DDC) design, allowing CMOS based devices to have a reduced ?VT compared to conventional bulk CMOS and can allow the threshold voltage VT of FETs having dopants in the channel region to be set much more precisely. The DDC design also can have a strong body effect compared to conventional bulk CMOS transistors, which can allow for significant dynamic control of power consumption in DDC transistors. Additional structures, configurations, and methods presented herein can be used alone or in conjunction with the DDC to yield additional and different benefits.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 24, 2013
    Applicant: SUVOLTA, INC.
    Inventors: Scott E. Thompson, Damodar R. Thummalapally
  • Publication number: 20130020639
    Abstract: Some structures and methods to reduce power consumption in devices can be implemented largely by reusing existing bulk CMOS process flows and manufacturing technology, allowing the semiconductor industry as well as the broader electronics industry to avoid a costly and risky switch to alternative technologies. Some of the structures and methods relate to a Deeply Depleted Channel (DDC) design, allowing CMOS based devices to have a reduced ?VT compared to conventional bulk CMOS and can allow the threshold voltage VT of FETs having dopants in the channel region to be set much more precisely. The DDC design also can have a strong body effect compared to conventional bulk CMOS transistors, which can allow for significant dynamic control of power consumption in DDC transistors. Additional structures, configurations, and methods presented herein can be used alone or in conjunction with the DDC to yield additional and different benefits.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 24, 2013
    Applicant: Suvolta, Inc
    Inventors: Scott E. Thompson, Damodar R. Thummalapally
  • Publication number: 20120299111
    Abstract: Some structures and methods to reduce power consumption in devices can be implemented largely by reusing existing bulk CMOS process flows and manufacturing technology, allowing the semiconductor industry as well as the broader electronics industry to avoid a costly and risky switch to alternative technologies. Some of the structures and methods relate to a Deeply Depleted Channel (DDC) design, allowing CMOS based devices to have a reduced ?VT compared to conventional bulk CMOS and can allow the threshold voltage VT of FETs having dopants in the channel region to be set much more precisely. The DDC design also can have a strong body effect compared to conventional bulk CMOS transistors, which can allow for significant dynamic control of power consumption in DDC transistors. Additional structures, configurations, and methods presented herein can be used alone or in conjunction with the DDC to yield additional and different benefits.
    Type: Application
    Filed: July 19, 2012
    Publication date: November 29, 2012
    Applicant: SUVOLTA, INC.
    Inventors: Scott E. Thompson, Damodar R. Thummalapally
  • Publication number: 20120242409
    Abstract: Circuits are disclosed that may include a plurality of transistors having controllable current paths coupled between at least a first and second node, the transistors configured to generate an analog electrical output signal in response to an analog input value; wherein at least one of the transistors has a deeply depleted channel formed below its gate that includes a substantially undoped channel region formed over a relatively highly doped screen layer formed over a doped body region.
    Type: Application
    Filed: March 24, 2011
    Publication date: September 27, 2012
    Inventors: Lawrence T. Clark, Scott E. Thompson
  • Patent number: 8273617
    Abstract: A suite of novel structures and methods is provided to reduce power consumption in a wide array of electronic devices and systems. Some of these structures and methods can be implemented largely by reusing existing bulk CMOS process flows and manufacturing technology, allowing the semiconductor industry as well as the broader electronics industry to avoid a costly and risky switch to alternative technologies. As will be discussed, some of the structures and methods relate to a Deeply Depleted Channel (DDC) design, allowing CMOS based devices to have a reduced ?VT compared to conventional bulk CMOS and can allow the threshold voltage VT of FETs having dopants in the channel region to be set much more precisely. The DDC design also can have a strong body effect compared to conventional bulk CMOS transistors, which can allow for significant dynamic control of power consumption in DDC transistors.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: September 25, 2012
    Assignee: SuVolta, Inc.
    Inventors: Scott E. Thompson, Damodar R. Thummalapally
  • Publication number: 20110309447
    Abstract: A structure and method of fabrication thereof relate to a Deeply Depleted Channel (DDC) design, allowing CMOS based devices to have a reduced ?VT compared to conventional bulk CMOS and can allow the threshold voltage VT of FETs having dopants in the channel region to be set much more precisely. A novel dopant profile indicative of a distinctive notch enables tuning of the VT setting within a precise range. This VT set range may be extended by appropriate selection of metals so that a very wide range of VT settings is accommodated on the die. The DDC design also can have a strong body effect compared to conventional bulk CMOS transistors, which can allow for significant dynamic control of power consumption in DDC transistors. The result is the ability to independently control VT (with a low ?VT) and VDD, so that the body bias can be tuned separately from VT for a given device.
    Type: Application
    Filed: December 17, 2010
    Publication date: December 22, 2011
    Inventors: Reza Arghavani, Pushkar Ranade, Lucian Shifren, Scott E. Thompson, Catherine de Villeneuve
  • Publication number: 20110248352
    Abstract: A structure and method of fabrication thereof relate to a Deeply Depleted Channel (DDC) design, allowing CMOS based devices to have a reduced ?VT compared to conventional bulk CMOS and can allow the threshold voltage VT of FETs having dopants in the channel region to be set much more precisely. The DDC design also can have a strong body effect compared to conventional bulk CMOS transistors, which can allow for significant dynamic control of power consumption in DDC transistors. The semiconductor structure includes an analog device and a digital device each having an epitaxial channel layer where a single gate oxidation layer is on the epitaxial channel layer of NMOS and PMOS transistor elements of the digital device and one of a double and triple gate oxidation layer is on the epitaxial channel layer of NMOS and PMOS transistor elements of the analog device.
    Type: Application
    Filed: December 17, 2010
    Publication date: October 13, 2011
    Inventors: Lucian Shifren, Pushkar Ranade, Scott E. Thompson, Sachin R. Sonkusale, Weimin Zhang
  • Publication number: 20110074498
    Abstract: A suite of novel structures and methods is provided to reduce power consumption in a wide array of electronic devices and systems. Some of these structures and methods can be implemented largely by reusing existing bulk CMOS process flows and manufacturing technology, allowing the semiconductor industry as well as the broader electronics industry to avoid a costly and risky switch to alternative technologies. As will be discussed, some of the structures and methods relate to a Deeply Depleted Channel (DDC) design, allowing CMOS based devices to have a reduced ?VT compared to conventional bulk CMOS and can allow the threshold voltage VT of FETs having dopants in the channel region to be set much more precisely. The DDC design also can have a strong body effect compared to conventional bulk CMOS transistors, which can allow for significant dynamic control of power consumption in DDC transistors.
    Type: Application
    Filed: February 18, 2010
    Publication date: March 31, 2011
    Applicant: SuVolta, Inc.
    Inventors: Scott E. Thompson, Damodar R. Thummalapally
  • Patent number: 7723720
    Abstract: A packaged semiconductor device (450) includes a semiconductor chip (400) having at least one selectively thinned substrate (cavity) region (410). A package (460) is provided for mounting, enclosing and electrically connecting the chip (400) to the outside world, and structure for applying external stress (470) to induce strain in the thinned substrate region (410). The external stress is preferably adjustable, such as by varying the gas flow (or a vacuum) applied through a pressure valve.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: May 25, 2010
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Toshikazu Nishida, Scott E. Thompson, Al Ogden, Kehuey Wu
  • Publication number: 20090072371
    Abstract: A packaged semiconductor device (450) includes a semiconductor chip (400) having at least one selectively thinned substrate (cavity) region (410). A package (460) is provided for mounting, enclosing and electrically connecting the chip (400) to the outside world, and structure for applying external stress (470) to induce strain in the thinned substrate region (410). The external stress is preferably adjustable, such as by varying the gas flow (or a vacuum) applied through a pressure valve.
    Type: Application
    Filed: November 9, 2005
    Publication date: March 19, 2009
    Applicant: University of Florida Research Foundation, Inc.
    Inventors: Toshikazu Nishida, Scott E. Thompson, Al Ogden, Wu Kehuey
  • Patent number: 6020244
    Abstract: An improved well boosting implant which provides better characteristics than traditional halo implants particularly for short channel devices (e.g., 0.25 microns or less). In effect, an implant is distributed across the entire channel with higher concentrations occurring in the center of the channel of the devices having gate lengths less than the critical dimension. This is done by using very large tilt angles (e.g., 30-50.degree.) with a relatively light dopant species and by using a relatively high energy when compared to the traditional halo implants.
    Type: Grant
    Filed: December 30, 1996
    Date of Patent: February 1, 2000
    Assignee: Intel Corporation
    Inventors: Scott E. Thompson, Paul A. Packan, Tahir Ghani, Mark Stettler, Shahriar S. Ahmed, Mark T. Bohr
  • Patent number: 5877072
    Abstract: A process for doping a region in a substrate from a solid phase source. An inert gas is bubbled through a dopant containing ester and supplied to a chamber along with the gases used to form a silicon dioxide layer such as a TEOS formed layer. The flow of the inert gas can be modulated to grade the dopant concentration in the silicon dioxide layer. The dopant is diffused from the silicon dioxide layer into the substrate to form, for instance, source and drain regions in field-effect transistors.
    Type: Grant
    Filed: March 31, 1997
    Date of Patent: March 2, 1999
    Assignee: Intel Corporation
    Inventors: Ebrahim Andideh, Scott E. Thompson
  • Patent number: 5874344
    Abstract: A two step source/drain annealing process which permits a dopant to be ion implanted directly into the silicon without a protective oxide. The gate oxide is removed before the ion implantation of the dopant occurs, thus the dopant is implanted directly into bare silicon. In a first step of the annealing process, a thin oxide is grown over the source and drain regions at a relatively low temperature (e.g., 600.degree. C.) this temperature to prevent the evaporation of the dopant from the silicon substrate and polysilicon gate. The second step of the annealing process occurs at a higher temperature allowing the dopant to be driven into the substrate forming the source and drain regions.
    Type: Grant
    Filed: December 30, 1996
    Date of Patent: February 23, 1999
    Assignee: Intel Corporation
    Inventors: Scott E. Thompson, Chai-Hong Jan