Patents by Inventor Scott Han

Scott Han has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240111875
    Abstract: The management of web page content includes maintaining an auditable log of trust verification relating to the web page content. The management further includes an attestation of a source of the web page content. The attestation relates to a security practice of the source, computer code provided by the source, a reputation of the source, and a history of the source. A modified version of a Verkle Tree is then applied to the auditable log and the attestation of the source.
    Type: Application
    Filed: October 4, 2022
    Publication date: April 4, 2024
    Inventors: Igor Stolbikov, Chunling Han, Christian De Hoyos, Scott Wentao Li
  • Patent number: 11940740
    Abstract: In a lithographic process, product units such as semiconductor wafers are subjected to lithographic patterning operations and chemical and physical processing operations. Alignment data or other measurements are made at stages during the performance of the process to obtain object data representing positional deviation or other parameters measured at points spatially distributed across each unit. This object data is used to obtain diagnostic information by performing a multivariate analysis to decompose a set of vectors representing the units in the multidimensional space into one or more component vectors. Diagnostic information about the industrial process is extracted using the component vectors. The performance of the industrial process for subsequent product units can be controlled based on the extracted diagnostic information.
    Type: Grant
    Filed: June 9, 2022
    Date of Patent: March 26, 2024
    Assignee: ASML NETHERLANDS B.V.
    Inventors: Alexander Ypma, Jasper Menger, David Deckers, David Han, Adrianus Cornelis Matheus Koopman, Irina Lyulina, Scott Anderson Middlebrooks, Richard Johannes Franciscus Van Haren, Jochem Sebastiaan Wildenberg
  • Patent number: 11940824
    Abstract: Embodiments of the present disclosure describe methods, apparatuses, and systems for hybrid low dropout regulator (LDO) architecture and realization to provide high power supply rejection ratio (PSRR) and high conversion efficiency (CE), and other benefits. The hybrid LDO may be coupled with dual rails for its analog LDO branch and digital LDO respectively to achieve high PSRR and high CE by utilizing the hybrid architecture with several feedback loops. Other embodiments may be described and claimed.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: March 26, 2024
    Assignee: Intel Corporation
    Inventors: Xiaosen Liu, Harish Krishnamurthy, Krishnan Ravichandran, Vivek De, Scott Chiu, Claudia Patricia Barrera Gonzalez, Jing Han, Rajasekhara Madhusudan Narayana Bhatla
  • Publication number: 20240074194
    Abstract: Some embodiments include apparatuses and methods of forming the apparatuses. One of the apparatuses includes tiers located one over another; a first staircase structure formed in the tiers; a second staircase structure formed in the tiers adjacent the first staircase structure, respective portions of conductive materials in the tiers forming a part of the first and second staircase structure and a part of respective control gates associated with memory cells; a first trench structure formed in the tiers adjacent the first staircase structure and the second staircase structure, the first trench structure including length in a direction from the first staircase structure to the second staircase structure; and a second trench structure formed in the tiers adjacent the first trench structure, the second trench structure including a length in the direction from the first staircase structure to the second staircase structure.
    Type: Application
    Filed: August 24, 2023
    Publication date: February 29, 2024
    Inventors: Shruthi Kumara Vadivel, Harsh Narendrakumar Jain, Richard T. Housley, Zhenxing Han, Scott L. Light, Qinglin Zeng, Hsiao-Kuan Yuan, Jordan Chess, Xiaosong Zhang
  • Publication number: 20240065252
    Abstract: A system includes an acoustic lure and a sensor package disposed within an interior volume of an insect trapping container and a computing device in communication with the acoustic lure and the sensor package configured to instruct the acoustic lure to output an acoustic tone. The computer device is further configured to receive sensor data from the sensor package, the sensor data representative of insects within the interior volume. Responsive to receiving the sensor data, the computing device is configured to instruct an imaging device to capture image data representative of the insects within the interior volume or determine insect count data based on the sensor data. The computing device is configured to then transmit output data to a remote computing system, the output data including at least one of a first portion of the image data or a second portion of the insect count data.
    Type: Application
    Filed: November 9, 2023
    Publication date: February 29, 2024
    Inventors: Scott Ritche, Kyran M. Staunton, Wei Xiang, Yu Han, Nigel Snoad, Jianyi Liu, Jacob Crawford, Mark Desnoyer
  • Patent number: 11661355
    Abstract: The present invention provides an improved catalytic fast pyrolysis process for increased yield of useful and desirable products. In particular, the process comprises an improved catalytic fast pyrolysis process for producing aromatic compounds, such as, for example, benzene, toluene and xylenes, from biomass feedstock containing impurities, such as, for example alkali and alkaline earth metal, sulfur and nitrogen components.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: May 30, 2023
    Assignee: Anellotech, Inc.
    Inventors: Jian Shi, Charles Sorensen, Terry Mazanec, Ruozhi Song, Sandeep Goud, Scott Han, Yu-Ting Cheng, Victoria L. Frank, William F. Igoe, Jr., Marc Schneidkraut
  • Patent number: 11584805
    Abstract: Described herein are methods for the production of oligosaccharides, including functionalized oligosaccharides, from one or more sugars, such as one or more monosaccharides, using polymeric and solid-supported catalysts containing acidic and ionic groups. Also provided are the oligosaccharide compositions, including functionalized oligosaccharide compositions, obtained using the methods.
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: February 21, 2023
    Assignee: DSM Nutritional Products, LLC
    Inventors: John M. Geremia, Anastasia V. Lioubomirov, Scott Han, Benjamin A. Seigal, Alicia Landry, Kyle Sherry, Stephen Panos, Devin Churchman, Andrew O'Connor
  • Publication number: 20210002387
    Abstract: Described herein are methods for the production of oligosaccharides, including functionalized oligosaccharides, from one or more sugars, such as one or more monosaccharides, using polymeric and solid-supported catalysts containing acidic and ionic groups. Also provided are the oligosaccharide compositions, including functionalized oligosaccharide compositions, obtained using the methods.
    Type: Application
    Filed: June 25, 2020
    Publication date: January 7, 2021
    Inventors: John M. GEREMIA, Anastasia V. MURPHY, Scott HAN, Benjamin A. SEIGAL, Alicia LANDRY, Kyle SHERRY, Stephen PANOS, Devin CHURCHMAN, Andrew O'CONNOR
  • Publication number: 20200290896
    Abstract: The present invention provides an improved catalytic fast pyrolysis process for increased yield of useful and desirable products. In particular, the process comprises an improved catalytic fast pyrolysis process for producing aromatic compounds, such as, for example, benzene, toluene and xylenes, from biomass feedstock containing impurities, such as, for example alkali and alkaline earth metal, sulfur and nitrogen components.
    Type: Application
    Filed: June 2, 2020
    Publication date: September 17, 2020
    Inventors: Jian Shi, Charles Sorensen, Terry Mazanec, Ruozhi Song, Sandeep Goud, Scott Han, Yu-Ting Cheng, Victoria L. Frank, William F. Igoe, JR., Marc Schneidkraut
  • Patent number: 10752705
    Abstract: Described herein are methods for the production of oligosaccharides, including functionalized oligosaccharides, from one or more sugars, such as one or more monosaccharides, using polymeric and solid-supported catalysts containing acidic and ionic groups. Also provided are the oligosaccharide compositions, including functionalized oligosaccharide compositions, obtained using the methods.
    Type: Grant
    Filed: July 9, 2015
    Date of Patent: August 25, 2020
    Assignee: Cadena Bio, Inc.
    Inventors: John M. Geremia, Anastasia V. Murphy, Scott Han, Benjamin A. Seigal, Alicia Landry, Kyle Sherry, Stephen Panos, Devin Churchman, Andrew O'Connor
  • Patent number: 10703649
    Abstract: The present invention provides an improved catalytic fast pyrolysis process for increased yield of useful and desirable products. In particular, the process comprises an improved catalytic fast pyrolysis process for producing aromatic compounds, such as, for example, benzene, toluene and xylenes, from biomass feedstock containing impurities, such as, for example alkali and alkaline earth metal, sulfur and nitrogen components.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: July 7, 2020
    Assignee: Anellotech, Inc.
    Inventors: Jian Shi, Charles Sorensen, Terry Mazanec, Ruozhi Song, Sandeep Goud, Scott Han, Yu-Ting Cheng, Victoria L. Frank, William F. Igoe, Jr., Marc Schneidkraut
  • Publication number: 20190315636
    Abstract: The present invention provides an improved catalytic fast pyrolysis process for increased yield of useful and desirable products. In particular, the process comprises an improved catalytic fast pyrolysis process for producing aromatic compounds, such as, for example, benzene, toluene and xylenes, from biomass feedstock containing impurities, such as, for example alkali and alkaline earth metal, sulfur and nitrogen components.
    Type: Application
    Filed: June 26, 2019
    Publication date: October 17, 2019
    Applicant: Anellotech, Inc.
    Inventors: Jian Shi, Charles Sorensen, Terry Mazanec, Ruozhi Song, Sandeep Goud, Scott Han, Yu-Ting Cheng, Victoria L. Frank, William F. Igoe, Jr., Marc Schneidkraut
  • Patent number: 10336628
    Abstract: The present invention provides an improved catalytic fast pyrolysis process for increased yield of useful and desirable products. In particular, the process comprises an improved catalytic fast pyrolysis process for producing aromatic compounds, such as, for example, benzene, toluene and xylenes, from biomass feedstock containing impurities, such as, for example alkali and alkaline earth metal, sulfur and nitrogen components.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: July 2, 2019
    Assignee: ANELLOTECH, INC.
    Inventors: Jian Shi, Charles Sorensen, Terry Mazanec, Ruozhi Song, Sandeep Goud, Scott Han, Yu-Ting Cheng, Victoria L. Frank, William F. Igoe, Jr., Marc Schneidkraut
  • Publication number: 20170002270
    Abstract: The present invention provides an improved catalytic fast pyrolysis process for increased yield of useful and desirable products. In particular, the process comprises an improved catalytic fast pyrolysis process for producing aromatic compounds, such as, for example, benzene, toluene and xylenes, from biomass feedstock containing impurities, such as, for example alkali and alkaline earth metal, sulfur and nitrogen components.
    Type: Application
    Filed: June 22, 2016
    Publication date: January 5, 2017
    Inventors: Jian Shi, Charles Sorensen, Terry Mazanec, Ruozhi Song, Sandeep Goud, Scott Han, Yu-Ting Cheng, Victoria L. Frank, William F. Igoe, JR., Marc Schneidkraut
  • Patent number: 9464017
    Abstract: Provided is a process for the preparation of diaryl oxide compounds. The process uses a mixed metal oxide catalyst containing oxides of aluminum and magnesium to decarboxylate a diaryl carbonate compound to yield the diaryl oxide compound.
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: October 11, 2016
    Inventors: Paul R. Elowe, Scott Han, Stephen W. King, Cynthia L. Rand
  • Publication number: 20160007642
    Abstract: Described herein are methods for the production of oligosaccharides, including functionalized oligosaccharides, from one or more sugars, such as one or more monosaccharides, using polymeric and solid-supported catalysts containing acidic and ionic groups. Also provided are the oligosaccharide compositions, including functionalized oligosaccharide compositions, obtained using the methods.
    Type: Application
    Filed: July 9, 2015
    Publication date: January 14, 2016
    Applicant: MIDORI USA, INC.
    Inventors: John M. GEREMIA, Anastasia V. MURPHY, Scott HAN, Benjamin A. SEIGAL, Alicia LANDRY, Kyle SHERRY, Stephen PANOS, Devin CHURCHMAN, Andrew O'CONNOR
  • Publication number: 20160002134
    Abstract: Provided is a process for the preparation of diaryl oxide compounds. The process uses a mixed metal oxide catalyst containing oxides of aluminum and magnesium to decarboxylate a diaryl carbonate compound to yield the diaryl oxide compound.
    Type: Application
    Filed: March 19, 2014
    Publication date: January 7, 2016
    Inventors: Paul R. Elowe, Scott Han, Stephen W. King, Cynthia L. Rand
  • Patent number: 9156764
    Abstract: A process comprising catalytically converting ethane to ethylene and acetic acid in the presence of oxygen at a temperature of 450° C. or less in the gas phase wherein the catalyst has the empirical formula MoVaNbbTecZdOn.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: October 13, 2015
    Inventors: Scott Han, Christopher D. Frick, Daniel J. Martenak
  • Patent number: 9120735
    Abstract: The application concerns a process comprising: (A) contacting a gas comprising oxygen, propane and propylene with at least one catalyst under reaction conditions sufficient to at least partially convert the propylene into a final product comprising acrylic acid; (B) feeding said final product to a separation column, in which the final product is split into a liquid stream, which is rich in acrylic acid, and a gaseous by-product stream comprising propane and propylene in a volume ratio of from 99.9:0.1 to 95:5; (C) contacting the gaseous by-product stream with oxygen in the presence of a catalyst under reaction conditions sufficient to at least partially convert propane to acrylic acid.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: September 1, 2015
    Inventors: Scott Han, Christopher D. Frick, Dmitri A. Kraptchetov, Daniel J. Martenak, Nelson I. Quiros, Timothy J. Donnelly
  • Patent number: 9035092
    Abstract: A process for producing unsaturated carboxylic acids or unsaturated nitriles by vapor phase oxidation reaction of their corresponding C3 to C5 alkanes, C3 to C5 alkenes, and mixtures thereof, as a hydrocarbon starting material, wherein the process performance is monitored and the path of gasses through catalyst beds is altered. Improved catalyst lifetimes may be achieved.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: May 19, 2015
    Inventors: Scott Han, Edward C. Bayer, Andrew M. Lemonds, Daniel J. Martenak, Nelson I. Quiros