Patents by Inventor Scott Iverson Shillig

Scott Iverson Shillig has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11878444
    Abstract: A method for producing a hollow composite structure, such as a spar beam for use in a wind turbine blade, includes placing fiber reinforcement material around a mandrel within a mold, and curing the fiber reinforcement material. The mandrel is formed from a compressible material having a rigid neutral state with a rigidity to maintain a defined shape of the mandrel during lay up and curing of the fiber reinforcement material. Subsequent to curing, a vacuum is drawn on the mandrel to compress the compressible material so that the compressed mandrel can be drawn out through an opening in the composite structure, the opening having a size such that the mandrel could not be withdrawn through the opening in the rigid neutral state of the mandrel.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: January 23, 2024
    Assignee: GE Infrastructure Technology LLC
    Inventors: Louis Rondeau, Aaron A. Yarbrough, Xu Chen, Scott Iverson Shillig
  • Patent number: 11840030
    Abstract: A method for manufacturing a structural component of a blade segment for a rotor blade includes providing a mold of the structural component having an outer wall that defines an outer surface of the structural component. The method also includes laying up one or more fiber layers in the mold so as to at least partially cover the outer wall. As such, the fiber layer(s) form the outer surface of the structural component. Further, the method includes providing one or more metal mesh layers having one or more ends. Moreover, the method includes providing a cover material to the end(s) of the metal mesh layer(s). In addition, the method includes placing the metal mesh layer(s) with the covered end(s) atop the fiber layer(s). Thus, the method includes infusing the fiber layer(s) and the metal mesh layer(s) together via a resin material so as to form the structural component.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: December 12, 2023
    Assignee: General Electric Company
    Inventors: Andrew Mitchell Rodwell, Xu Chen, Julie Ann Shepherd, Scott Iverson Shillig
  • Patent number: 11780183
    Abstract: A method for manufacturing a structural component of a blade segment for a segmented rotor blade of a wind turbine includes providing a mold of the structural component. The mold has an outer wall that defines an outer surface of the structural component. The method also includes securing at least one tooling pin to the outer wall for defining a pin joint slot in the structural component. Further, the method includes laying up one or more outer fiber layers in the mold so as to at least partially cover the outer wall. The outer fiber layer(s) has at least one hole that receives the tooling pin(s). As such, the outer fiber layer(s) form the outer surface of the structural component. Moreover, the method includes placing one or more structural features atop the outer fiber layer(s) in the mold. In addition, the method includes infusing the outer fiber layer(s) and the structural feature(s) together via a resin material so as to form the structural component.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: October 10, 2023
    Assignee: General Electric Company
    Inventors: Scott Jacob Huth, Xu Chen, Louis Rondeau, Andrew Mitchell Rodwell, Scott Iverson Shillig
  • Patent number: 11628634
    Abstract: A method for producing a hollow composite structure, such as a spar beam for a wind turbine blade, includes placing a membrane within a mold tool, the membrane being permeable to air and impermeable to resin. A mandrel is placed within the mold tool, the mandrel enclosed in an air tight layer that includes a vent. Fiber reinforcement material is placed around the mandrel within the mold tool and the membrane is sealed at least partly around the fiber reinforcement material and mandrel. The mold tool is closed with the vent line from the mandrel extending through the sealed membrane to outside of the mold tool. A vacuum is drawn in the mold tool while the mandrel is vented to outside of the mold tool, and while the vacuum is being drawn, resin is infused into the mold tool around the mandrel such that the resin is drawn towards the membrane.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: April 18, 2023
    Assignee: General Electric Company
    Inventors: Xu Chen, Amir Riahi, Thomas Merzhaeuser, Julie Ann Shepherd, Louis Rondeau, Scott Iverson Shillig
  • Publication number: 20220178346
    Abstract: A rotor blade includes first and second blade segments extending in opposite directions from a chord-wise joint. The first blade segment includes a beam structure that connects with the second blade segment via a receiving section. A chord-wise gap exists between an edge of the beam structure and an edge of the receiving section. The beam structure defines a first pin joint slot, whereas the receiving section defines a second pin joint slot that aligns with the first pin joint slot. First and second bushings are arranged in first ends of the first and second pin joint slots, each having a flange extending within the chord-wise gap. As such, the flanges abut against each other within the chord-wise gap so as to fill the chord-wise gap with a predetermined defined gap or interference. Further, a chord-wise extending pin is positioned through the bushings so as to secure the first and second blade segments together.
    Type: Application
    Filed: February 27, 2020
    Publication date: June 9, 2022
    Inventors: Jon Stuart Wright, Andrew Mitchell Rodwell, Scott Jacob Huth, Scott Iverson Shillig, Rohit Agarwal, Ashley Simone Wilford
  • Publication number: 20220072812
    Abstract: A method for manufacturing a structural component of a blade segment for a segmented rotor blade of a wind turbine includes forming first and second portions of the structural component. The first and second portions include respective holes that align in a chord-wise direction. The method also includes placing the first and second portions of the structural component into a mold such that their respective holes align in the chord-wise direction. Further, the method includes placing a tooling pin through the aligned holes. In addition, the method includes infusing the first and second sides together in the second mold via a resin material so as to form the structural component. Moreover, the method includes removing the tooling pin after the structural component has cured.
    Type: Application
    Filed: December 11, 2018
    Publication date: March 10, 2022
    Inventors: Scott Jacob Huth, Andrew Mitchell Rodwell, Xu Chen, Louis Rondeau, Scott Iverson Shillig
  • Publication number: 20220063216
    Abstract: A method for manufacturing a structural component of a blade segment for a segmented rotor blade of a wind turbine includes providing a mold of the structural component. The mold has an outer wall that defines an outer surface of the structural component. The method also includes securing at least one tooling pin to the outer wall for defining a pin joint slot in the structural component. Further, the method includes laying up one or more outer fiber layers in the mold so as to at least partially cover the outer wall. The outer fiber layer(s) has at least one hole that receives the tooling pin(s). As such, the outer fiber layer(s) form the outer surface of the structural component. Moreover, the method includes placing one or more structural features atop the outer fiber layer(s) in the mold. In addition, the method includes infusing the outer fiber layer(s) and the structural feature(s) together via a resin material so as to form the structural component.
    Type: Application
    Filed: December 11, 2018
    Publication date: March 3, 2022
    Inventors: Scott Jacob Huth, Xu Chen, Louis Rondeau, Andrew Mitchell Rodwell, Scott Iverson Shillig
  • Publication number: 20220048258
    Abstract: A method for producing a hollow composite structure, such as a spar beam for a wind turbine blade, includes placing a membrane within a mold tool, the membrane being permeable to air and impermeable to resin. A mandrel is placed within the mold tool, the mandrel enclosed in an air tight layer that includes a vent. Fiber reinforcement material is placed around the mandrel within the mold tool and the membrane is sealed at least partly around the fiber reinforcement material and mandrel. The mold tool is closed with the vent line from the mandrel extending through the sealed membrane to outside of the mold tool. A vacuum is drawn in the mold tool while the mandrel is vented to outside of the mold tool, and while the vacuum is being drawn, resin is infused into the mold tool around the mandrel such that the resin is drawn towards the membrane.
    Type: Application
    Filed: December 11, 2018
    Publication date: February 17, 2022
    Inventors: Xu Chen, Amir Riahi, Thomas Merzhaeuser, Julie Ann Shepherd, Louis Rondeau, Scott Iverson Shillig
  • Publication number: 20220024162
    Abstract: A method for manufacturing a structural component of a blade segment for a rotor blade includes providing a mold of the structural component having an outer wall that defines an outer surface of the structural component. The method also includes laying up one or more fiber layers in the mold so as to at least partially cover the outer wall. As such, the fiber layer(s) form the outer surface of the structural component. Further, the method includes providing one or more metal mesh layers having one or more ends. Moreover, the method includes providing a cover material to the end(s) of the metal mesh layer(s). In addition, the method includes placing the metal mesh layer(s) with the covered end(s) atop the fiber layer(s). Thus, the method includes infusing the fiber layer(s) and the metal mesh layer(s) together via a resin material so as to form the structural component.
    Type: Application
    Filed: December 11, 2018
    Publication date: January 27, 2022
    Inventors: Andrew Mitchell Rodwell, Xu Chen, Julie Ann Shepherd, Scott Iverson Shillig
  • Publication number: 20220016808
    Abstract: A method for producing a hollow composite structure, such as a spar beam for use in a wind turbine blade, includes placing fiber reinforcement material around a mandrel within a mold, and curing the fiber reinforcement material. The mandrel is formed from a compressible material having a rigid neutral state with a rigidity to maintain a defined shape of the mandrel during lay up and curing of the fiber reinforcement material. Subsequent to curing, a vacuum is drawn on the mandrel to compress the compressible material so that the compressed mandrel can be drawn out through an opening in the composite structure, the opening having a size such that the mandrel could not be withdrawn through the opening in the rigid neutral state of the mandrel.
    Type: Application
    Filed: December 11, 2018
    Publication date: January 20, 2022
    Inventors: Louis Rondeau, Aaron A. Yarbrough, Xu Chen, Scott Iverson Shillig