Patents by Inventor Scott J. Weigel

Scott J. Weigel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240101435
    Abstract: Disclosed is a method of synthesizing a molecular sieve of MWW framework type, and molecular sieves so synthesized. The method comprises preparing a synthesis mixture for forming a molecular sieve of MWW framework type, said synthesis mixture comprising water, a silicon source, a source of a trivalent element X, a structure directing agent R, a source of alkali or alkaline earth metal cation M, and a source of poly(diallyldimethyl ammonium) cation (PDDA).
    Type: Application
    Filed: March 2, 2022
    Publication date: March 28, 2024
    Inventors: Sina Sartipi, Marc H. Anthonis, Aaron W. Peters, Scott J. Weigel
  • Publication number: 20240093100
    Abstract: Provided herein are catalysts for dewaxing of a feedstock, the catalyst comprising between about 40 wt. % and about 99.9 wt. % zeolite, between about 0 wt. % and about 40 wt. % binder and at least about 0.1 wt. % noble metal, as well as catalyst systems, methods and products produced using the catalysts. The zeolite having a crystal comprising a largest included sphere less than or equal to about 7.5 angstroms, a largest diffusing sphere greater than or equal to about 5.0 angstroms, and a silica to alumina ratio greater than or equal to about 100:1. The catalyst having a temperature-programmed ammonia desorption (“TPAD”) of less than about 0.25 mmol/g.
    Type: Application
    Filed: January 24, 2022
    Publication date: March 21, 2024
    Applicant: ExxonMobil Technology and Engineering Company
    Inventors: William J. Knaeble, Scott J. Weigel, Preeti Kamakoti
  • Publication number: 20240075191
    Abstract: The disclosed subject matter relates to extracorporeal blood processing or other processing of fluids. Volumetric fluid balance, a required element of many such processes, may be achieved with multiple pumps or other proportioning or balancing devices which are to some extent independent of each other. This need may arise in treatments that involve multiple fluids. Safe and secure mechanisms to ensure fluid balance in such systems are described.
    Type: Application
    Filed: November 14, 2023
    Publication date: March 7, 2024
    Applicant: NxStage Medical, Inc.
    Inventors: Jeffrey H. BURBANK, Dennis M. TREU, Daniel Joseph RUBERY, JR., Scott W. NEWELL, James M. BRUGGER, William J. SCHNELL, William K. WEIGEL, Steven A. WHITE, Mark T. WYETH, Jerome JAMES, David DESOUZA, Joseph E. TURK, JR., Garrett CASEY
  • Patent number: 11873453
    Abstract: Provided herein are methods and systems of making a high quality isoparaffinic base stock which include contacting an adsorbent material with a hydrocarbon feedstock and a solvent and separating at least some of the one or more high VI components from the hydrocarbon feedstock to produce a first fraction base stock having a first fraction base stock viscosity index. The adsorbent material is desorbed with a second solvent to produce a second fraction base stock having a second fraction base stock viscosity index. In these methods, the first fraction base stock viscosity index is less than the hydrocarbon feedstock viscosity index and the second fraction base stock viscosity index is greater than the hydrocarbon feedstock viscosity index.
    Type: Grant
    Filed: May 19, 2022
    Date of Patent: January 16, 2024
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Randall D. Partridge, Changyub Paek, Yogesh V. Joshi, Carmen C. Lasso, Scott J. Weigel
  • Publication number: 20240002417
    Abstract: Methods are provided for synthesizing metal organic framework compositions in an aqueous environment and/or in a mixed alcohol/water solvent. The methods can allow for formation of MOF-274 metal organic framework compositions, such as EMM-67 (a mixed metal MOF-274 metal organic framework composition). More generally, the methods can allow for formation of MOF structures that include disalicylate linkers in an aqueous environment and/or in a mixed alcohol/water solvent.
    Type: Application
    Filed: July 1, 2022
    Publication date: January 4, 2024
    Inventors: Anna C. IVASHKO, Carter W. ABNEY, Nicole M. HERB, Preeti KAMAKOTI, Aaron W. PETERS, Matthew T. KAPELEWSKI, Marc H. ANTHONIS, Roxana PEREZ VELEZ, Nadya A. HRYCENKO, Doron LEVIN, Tara L. REDDINGTON, Scott J. WEIGEL
  • Publication number: 20240001335
    Abstract: Methods are provided for synthesizing metal-organic framework compositions using synthesis mixtures with elevated solids content and/or elevated kinematic viscosity. The methods can allow for formation of MOF-274 metal-organic framework compositions, such as EMM-67 (a mixed-metal MOF-274 metal-organic composition). More generally, the methods can allow for formation of MOF structures that include multi-ring disalicylate organic linkers using synthesis mixtures that contain a reduced or minimized amount of solvent, such as down to having substantially no solvent in the synthesis mixture.
    Type: Application
    Filed: July 1, 2022
    Publication date: January 4, 2024
    Inventors: Anna C. IVASHKO, Aaron W. PETERS, Preeti KAMAKOTI, Scott J. WEIGEL, Matthew T. KAPELEWSKI, Nicole M. HERB, Roxana PEREZ VELEZ, Marc H. ANTHONIS, Doron LEVIN, Tara L. REDDINGTON
  • Patent number: 11745168
    Abstract: Tungstated zirconium catalysts for paraffin isomerization may comprise: a mixed metal oxide that is at least partially crystalline and comprises tungsten, zirconium, and a variable oxidation state metal selected from Fe, Mn, Co, Cu, Ce, Ni, and any combination thereof. The mixed metal oxide comprises about 5 wt. % to about 25 wt. % tungsten, about 40 wt. % to about 70 wt. % zirconium, and about 0.01 wt. % to about 5 wt. % variable oxidation state metal, each based on a total mass of the mixed metal oxide. The mixed metal oxide has a total surface area of about 50 m2/g or greater as measured according to ISO 9277, and at least one of the following: an ammonia uptake of about 0.05 to about 0.3 mmol/g as measured by temperature programmed adsorption/desorption, or a collidine uptake of about 100 ?mol/g or greater as measured gravimetrically.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: September 5, 2023
    Assignee: ExxonMobil Technology and Engineering Company
    Inventors: Scott J. Weigel, Megan E. Witzke, Wesley Sattler, Brandon M. Carcuffe, Jihad M. Dakka, Ryan S. Dugan
  • Patent number: 11739274
    Abstract: A hydrocarbon feed stream, particularly one comprising heavier hydrocarbons, may be converted to valuable products such as motor gasoline and/or lubricating oil by employing one or more MOF catalysts, which may be prepared from a precursor metal-organic framework (MOF). A MOF catalyst may be prepared by exchanging one or more organic linking ligands of the precursor MOF for an organic linking ligand having a different acidity and/or electron-withdrawing properties, which, in turn, may affect catalytic activity.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: August 29, 2023
    Assignee: Exxon Mobil Technology and Engineering Company
    Inventors: Brandon J. O'Neill, Joseph M. Falkowski, Allen W. Burton, Scott J. Weigel
  • Publication number: 20230249167
    Abstract: Catalyst composition which comprises a first zeolite having a BEA* framework type and a second zeolite having a MOR framework type and a mesopore surface area of greater than 30 m2/g is disclosed. These catalyst compositions are used to remove catalyst poisons from untreated feed streams having one or more impurities which cause deactivation of the downstream catalysts employed in hydrocarbon conversion processes, such as those that produce mono-alkylated aromatic compounds.
    Type: Application
    Filed: April 12, 2023
    Publication date: August 10, 2023
    Inventors: Matthew S. Ide, Doron Levin, Wenyih F. Lai, Ivy D. Johnson, Scott J. Weigel, Brett T. Loveless
  • Patent number: 11673127
    Abstract: Methods are provided for formulation of catalysts with improved catalyst exposure lifetimes under oxygenate conversion conditions. In various additional aspects, methods are described for performing oxygenate conversion reactions using such catalysts with improved catalyst exposure lifetimes. The catalyst formulation methods can include formulation of oxygenate conversion catalysts with binders that are selected from binders having a surface area of roughly 250 m2/g or less, or 200 m2/g or less. In various aspects, during formulation, a weak base can be added to the zeotype crystals, to the binder material, or to the mixture of the zeotype and the binder. It has been unexpectedly discovered that addition of a weak base, so that the weak base is present in at least one component of the binder mixture prior to formulation, can result in longer catalyst exposure lifetimes under methanol conversion conditions.
    Type: Grant
    Filed: March 3, 2020
    Date of Patent: June 13, 2023
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Brandon J. O'Neill, Scott J. Weigel
  • Patent number: 11654423
    Abstract: Catalyst composition which comprises a first zeolite having a BEA* framework type and a second zeolite having a MOR framework type and a mesopore surface area of greater than 30 m2/g is disclosed. These catalyst compositions are used to remove catalyst poisons from untreated feed streams having one or more impurities which cause deactivation of the downstream catalysts employed in hydrocarbon conversion processes, such as those that produce mono-alkylated aromatic compounds.
    Type: Grant
    Filed: February 7, 2018
    Date of Patent: May 23, 2023
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Matthew S. Ide, Doron Levin, Wenyih F. Lai, Ivy D. Johnson, Scott J. Weigel, Brett T. Loveless
  • Patent number: 11542446
    Abstract: Methods are provided for using a molecular sieve catalyst for dewaxing formed using a synthesis mixture comprising a morphology modifier. The catalyst may be used, for example, for production of a lubricant base stock. For example, ZSM-48 crystals formed using the morphology modifier (and/or formulated catalysts made using such crystals) can have an increased activity and/or can provide an improved yield during catalytic dewaxing of lubricant base stocks.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: January 3, 2023
    Assignee: Exxon Mobil Technology and Engineering Company
    Inventors: Preeti Kamakoti, Scott J. Weigel, Stephen J. McCarthy, Shifang L. Luo, Sina Sartipi, Martine Dictus, Marc H. Anthonis, Helge Jaensch
  • Publication number: 20220401922
    Abstract: Tungstated zirconium catalysts for paraffin isomerization may comprise: a mixed metal oxide that is at least partially crystalline and comprises tungsten, zirconium, and a variable oxidation state metal selected from Fe, Mn, Co, Cu, Ce, Ni, and any combination thereof. The mixed metal oxide comprises about 5 wt. % to about 25 wt. % tungsten, about 40 wt. % to about 70 wt. % zirconium, and about 0.01 wt. % to about 5 wt. % variable oxidation state metal, each based on a total mass of the mixed metal oxide. The mixed metal oxide has a total surface area of about 50 m2/g or greater as measured according to ISO 9277, and at least one of the following: an ammonia uptake of about 0.05 to about 0.3 mmol/g as measured by temperature programmed adsorption/desorption, or a collidine uptake of about 100 ?mol/g or greater as measured gravimetrically.
    Type: Application
    Filed: June 17, 2021
    Publication date: December 22, 2022
    Inventors: Scott J. Weigel, Megan E. Witzke, Wesley Sattler, Brandon M. Carcuffe, Jihad M. Dakka, Ryan S. Dugan
  • Publication number: 20220402838
    Abstract: Isomerization of normal paraffins to form branched paraffins may be complicated by significant cracking of C7+ paraffins under isomerization reaction conditions. This issue may complicate upgrading of hydrocarbon feeds having significant quantities of heavier normal paraffins. Cracking selectivity may be decreased by combining one or more naphthenic compounds with a feed mixture comprising at least one C7+ normal paraffin and/or by utilizing tungstated zirconium catalysts having decreased tungsten loading. Further, C5 and C6 normal paraffins may undergo isomerization in the presence of C7+ normal paraffins.
    Type: Application
    Filed: June 15, 2022
    Publication date: December 22, 2022
    Inventors: Wesley Sattler, Jihad M. Dakka, Guang Cao, Xinrui Yu, Brandon M. Carcuffe, Jason M. Golias, Scott J. Weigel, Carolyn M. Aimino, Megan E. Witzke
  • Publication number: 20220389331
    Abstract: Provided herein are methods and systems of making a high quality isoparaffinic base stock which include contacting an adsorbent material with a hydrocarbon feedstock and a solvent and separating at least some of the one or more high VI components from the hydrocarbon feedstock to produce a first fraction base stock having a first fraction base stock viscosity index. The adsorbent material is desorbed with a second solvent to produce a second fraction base stock having a second fraction base stock viscosity index. In these methods, the first fraction base stock viscosity index is less than the hydrocarbon feedstock viscosity index and the second fraction base stock viscosity index is greater than the hydrocarbon feedstock viscosity index.
    Type: Application
    Filed: May 19, 2022
    Publication date: December 8, 2022
    Inventors: Randall D. Partridge, Changyub Paek, Yogesh V. Joshi, Carmen C. Lasso, Scott J. Weigel
  • Publication number: 20220380686
    Abstract: A hydrocarbon feed stream, particularly one comprising heavier hydrocarbons, may be converted to valuable products such as motor gasoline and/or lubricating oil by employing one or more large pore zeolitic catalysts, which may be prepared from a precursor zeolite. In some examples, a large pore zeolitic catalyst may be utilized to selectively reduce the endpoint of a hydrocarbon composition.
    Type: Application
    Filed: July 14, 2020
    Publication date: December 1, 2022
    Inventors: Brandon J. O'Neill, Joseph M. Falkowski, Allen W. Burton, Scott J. Weigel
  • Publication number: 20220290057
    Abstract: A hydrocarbon feed stream, particularly one comprising heavier hydrocarbons, may be converted to valuable products such as motor gasoline and/or lubricating oil by employing one or more MOF catalysts, which may be prepared from a precursor metal-organic framework (MOF). A MOF catalyst may be prepared by exchanging one or more organic linking ligands of the precursor MOF for an organic linking ligand having a different acidity and/or electron-withdrawing properties, which, in turn, may affect catalytic activity.
    Type: Application
    Filed: July 14, 2020
    Publication date: September 15, 2022
    Inventors: Brandon J. O'Neill, Joseph M. Falkowski, Allen W. Burton, Scott J. Weigel
  • Patent number: 11433386
    Abstract: Methods are provided for activation of catalysts comprising low amounts of a hydrogenation metal, such as low amounts of a Group 8-10 noble metal. The amount of hydrogenation metal on the catalyst can correspond to 0.5 wt % or less (with respect to the weight of the catalyst), or 0.1 wt % or less, or 0.05 wt % or less. Prior to loading a catalyst into a reactor, the corresponding catalyst precursor can be first activated in a hydrogen-containing atmosphere containing 1.0 vppm of CO or less. The thus first-activated catalyst can be transferred to a reactor with optional exposure to oxygen during the transfer, where it can be further activated using a hydrogen-containing atmosphere containing 3.0 vppm of CO or higher, to yield a twice-activated catalyst with high performance. The catalyst can be advantageously a transalkylation catalyst or an isomerization catalyst useful for converting aromatic hydrocarbons.
    Type: Grant
    Filed: January 14, 2020
    Date of Patent: September 6, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Mayank Shekhar, Paul Podsiadlo, Michel Molinier, Scott J. Weigel, Travis D. Sparks, Jocelyn A. Gilcrest, Joseph E. Gatt
  • Patent number: 11433346
    Abstract: Disclosed are processes and systems for the removal of water from a feed stream utilizing swing adsorption processes including an adsorbent bed comprising an adsorbent material which is a cationic zeolite RHO. The cationic zeolite RHO comprises at least one, preferably two, metal cations selected from Group 1 and 2 elements (new Group 1-18 IUPAC numbering). The swing adsorption processes and systems utilizing the cationic zeolite RHO have an adsorption selectivity for water and are useful in selective dehydration of commercial feed streams. The cationic zeolite RHO additionally has an exceptionally high water adsorption stability for use in feed streams with wet acid gas environments operating under cyclic swing adsorption conditions.
    Type: Grant
    Filed: October 14, 2020
    Date of Patent: September 6, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Yu Wang, Barbara Carstensen, Daniel P. Leta, Peter I. Ravikovitch, Harry W. Deckman, Scott J. Weigel
  • Publication number: 20220213125
    Abstract: Metal-organic frameworks (MOFs) are highly porous entities comprising a multidentate ligand coordinated to multiple metal atoms, typically as a coordination polymer. MOFs are usually produced in powder form. Extrusion of powder-form MOFs to produce shaped bodies has heretofore proven difficult due to loss of surface area and poor crush strength of MOF extrudates, in addition to phase transformations occurring during extrusion. The choice of mixing conditions and the mixing solvent when forming MOF extrudates can impact these factors. Extrudates comprising a MOF consolidated material may feature the MOF consolidated material having a BET surface area of about 50% or greater relative to that of a pre-crystallized MOF powder material used to form the extrudate. X-ray powder diffraction of the extrudate shows about 20% or less conversion of the MOF consolidated material into a phase differing from that of the pre-crystallized MOF powder material.
    Type: Application
    Filed: December 13, 2019
    Publication date: July 7, 2022
    Inventors: Gerardo J. Majano, Joseph M. Falkowski, Scott J. Weigel, Matthew T. Kapelewski, Pavel Kortunov