Patents by Inventor Scott Koenig

Scott Koenig has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11078279
    Abstract: This invention relates to a pharmaceutical composition that comprises a first molecule that specifically binds HER2/neu and a second molecule that specifically binds a cell-surface receptor (or its ligand) that is involved in regulating an immune checkpoint (or the ligand thereof). The invention particularly relates to the embodiment wherein the second molecule binds to PD-1. The invention also relates to the use of such pharmaceutical compositions to treat cancer and other diseases.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: August 3, 2021
    Assignee: MacroGenics, Inc.
    Inventors: Jon Marc Wigginton, Naimish Bharat Pandya, Robert Joseph Lechleider, Scott Koenig, Ezio Bonvini
  • Patent number: 11072653
    Abstract: The present invention is directed to the anti-LAG-3 antibodies, LAG-3 mAb 1, LAG-3 mAb 2, LAG-3 mAb 4, LAG-3 mAb 5, and LAG-3 mAb 6, and to humanized and chimeric versions of such antibodies. The invention additionally pertains to LAG-3-binding molecules that comprise LAG-3 binding fragments of such anti-LAG-3 antibodies, immunocongugates, and to bispecific molecules, including diabodies, BiTEs, bispecific antibodies, etc., that comprise (i) such LAG-3-binding fragments, and (ii) a domain capable of binding an epitope of a molecule involved in regulating an immune check point present on the surface of an immune cells. The present invention also pertains to methods of detecting LAG-3, as well as methods of using molecules that bind LAG-3 for stimulating immune responses.
    Type: Grant
    Filed: June 7, 2016
    Date of Patent: July 27, 2021
    Assignee: MacroGenics, Inc.
    Inventors: Ross La Motte-Mohs, Kalpana Shah, Douglas H. Smith, Leslie S. Johnson, Paul A. Moore, Ezio Bonvini, Scott Koenig
  • Publication number: 20210206851
    Abstract: The present invention is directed to the anti-LAG-3 antibodies: LAG-3 mAb 1, LAG-3 mAb 2, LAG-3 mAb 4, LAG-3 mAb 5, and LAG-3 mAb 6, and to humanized and chimeric versions of such antibodies. The invention additionally pertains to LAG-3-binding molecules that comprise LAG-3 binding fragments of such anti-LAG-3 antibodies, immunoconjugates, and to bispecific molecules, including diabodies, BiTEs, bispecific antibodies, etc., that comprise (i) such LAG-3-binding fragments, and (ii) a domain capable of binding an epitope of a molecule involved in regulating an immune check point present on the surface of an immune cell. The present invention also pertains to methods of detecting LAG-3, as well as methods of using molecules that bind LAG-3 for stimulating immune responses.
    Type: Application
    Filed: January 12, 2021
    Publication date: July 8, 2021
    Applicant: MacroGenics, Inc.
    Inventors: Ross La Motte-Mohs, Kalpana Shah, Douglas H. Smith, Leslie S. Johnson, Paul A. Moore, Ezio Bonvini, Scott Koenig
  • Publication number: 20210130470
    Abstract: The present invention is directed to bispecific molecules (e.g., diabodies, bispecific antibodies, trivalent binding molecules, etc.) that possess at least one epitope-binding site that is immunospecific for an epitope of PD-1 and at least one epitope-binding site that is immunospecific for an epitope of CTLA-4 (i.e., a “PD-1×CTLA-4 bispecific molecule”). The PD-1×CTLA-4 bispecific molecules of the present invention are capable of simultaneously binding to PD-1 and to CTLA-4, particularly as such molecules are arrayed on the surfaces of human cells. The invention is directed to pharmaceutical compositions that contain such PD-1×CTLA-4 bispecific molecules, and to methods involving the use of such bispecific molecules in the treatment of cancer and other diseases and conditions. The present invention also pertains to methods of using such PD-1×CTLA-4 bispecific molecules to stimulate an immune response.
    Type: Application
    Filed: January 13, 2021
    Publication date: May 6, 2021
    Inventors: Leslie S. JOHNSON, Gurunadh Reddy CHICHILI, Kalpana SHAH, Ross LA MOTTE-MOHS, Paul A. Moore, Ezio Bonvini, Scott KOENIG
  • Publication number: 20210095021
    Abstract: The present invention relates to bispecific molecules that are capable of localizing an immune effector cell that expresses an activating receptor to a virally infected cell, so as to thereby facilitate the killing of the virally infected cell. In a preferred embodiment, such localization is accomplished using bispecific molecules that are immunoreactive with an activating receptor of an immune effector cell and to an antigen expressed by a cell infected with a virus wherein the antigen is detectably present on the cell infected with the virus at a level that is greater than the level at which the antigen is detected on the virus by the bispecific molecules, and to the use of such bispecific molecules in the treatment of latent viral infections.
    Type: Application
    Filed: June 22, 2020
    Publication date: April 1, 2021
    Applicants: MacroGenics, Inc., Duke University
    Inventors: Scott Koenig, Leslie S. Johnson, Chia-Ying Kao Lam, Liqin Liu, Jeffrey Lee Nordstrom, Barton F. Haynes, Guido Ferrari
  • Patent number: 10954301
    Abstract: The present invention is directed to bispecific molecules (e.g., diabodies, bispecific antibodies, trivalent binding molecules, etc.) that possess at least one epitope-binding site that is immunospecific for an epitope of PD-1 and at least one epitope-binding site that is immunospecific for an epitope of CTLA-4 (i.e., a “PD-1×CTLA-4 bispecific molecule”). The PD-1×CTLA-4 bispecific molecules of the present invention are capable of simultaneously binding to PD-1 and to CTLA-4, particularly as such molecules are arrayed on the surfaces of human cells. The invention is directed to pharmaceutical compositions that contain such PD-1×CTLA-4 bispecific molecules, and to methods involving the use of such bispecific molecules in the treatment of cancer and other diseases and conditions. The present invention also pertains to methods of using such PD-1×CTLA-4 bispecific molecules to stimulate an immune response.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: March 23, 2021
    Assignee: MACROGENICS, INC.
    Inventors: Leslie S. Johnson, Gurunadh Reddy Chichili, Kalpana Shah, Ross La Motte-Mohs, Paul A. Moore, Ezio Bonvini, Scott Koenig
  • Publication number: 20200392245
    Abstract: The present invention relates to methods of treating or preventing cancer and other diseases using molecules, particularly polypeptides, more particularly immunoglobulins (e.g., antibodies), comprising a variant Fc region, wherein said variant Fc region comprises at least one amino acid modification relative to a wild-type Fc region, which variant Fc region binds an Fc?R that activates a cellular effector (“Fc?RActivating,” such as Fc?RIIA or Fc?RIIIA) and an Fc?R that inhibits a cellular effector (“Fc?RInhibiting,” such as Fc?RIIA) with an altered Ratio of Affinities relative to the respective binding affinities of such Fc?R for the Fc region of the wild-type immunoglobulin. The methods of the invention are particularly useful in preventing, treating, or ameliorating one or more symptoms associated with a disease, disorder, or infection where either an enhanced efficacy of effector cell function mediated by Fc?R is desired (e.g.
    Type: Application
    Filed: May 29, 2020
    Publication date: December 17, 2020
    Applicant: MacroGenics, Inc.
    Inventors: Jeffrey B. Stavenhagen, Scott Koenig
  • Publication number: 20200354439
    Abstract: The invention is directed to bispecific molecules comprising an HIV-1 envelope targeting arm and an arm targeting an effector cell, compositions comprising these bispecific molecule and methods of use. In certain aspects, the bispecific molecules of the present invention can bind to two different targets or epitopes on two different cells within the first epitope is expressed on a different cell type than the second epitope, such that the bispecific molecules can bring the two cells together. In certain aspects, the bispecific molecules of the present invention can bind to two different cells, wherein the bispecific molecules comprises an arm with the binding specificity of A32, 7B2, CH27, CH28 or CH44.
    Type: Application
    Filed: June 2, 2020
    Publication date: November 12, 2020
    Applicants: Duke University, MacroGenics, Inc., The University of North Carolina at Chapel Hill
    Inventors: Barton F. HAYNES, Guido FERRARI, Scott KOENIG, Leslie S. JOHNSON, Chia-Ying Kao LAM, Julia A. SUNG, David M. MARGOLIS, Liqin LIU, Jeffrey Lee NORDSTROM
  • Publication number: 20200255524
    Abstract: The present invention is directed to a combination therapy for the treatment of cancer and pathogen-associated diseases, that comprises the administration of: (I) a molecule (e.g., a diabody, an scFv, an antibody, a TandAb, etc.) capable of binding PD-I or a natural ligand of PD-I, and (2) a molecule (e.g., a diabody, a BiTe, a bispecific antibody, a CAR, etc.) capable of mediating the redirected killing of a target cell (e.g., a cancer cell or a pathogeninfected cell, etc.) expressing a Disease Antigen. The invention particularly concerns the embodiment in which the molecule capable of mediating the redirected killing of the target cell is a bispecific binding molecule that comprises a first epitope-binding site capable of immuno specifically binding an epitope of a cell surface molecule of an effector cell and a second epitope-binding site that is capable of immuno specifically binding an epitope of such target cells.
    Type: Application
    Filed: June 6, 2017
    Publication date: August 13, 2020
    Inventors: Ezio Bonvini, Scott Koenig, Leslie S. Johnson, Paul A. Moore, Ralph F. Alderson, Jon Marc Wigginton
  • Patent number: 10730947
    Abstract: The present invention relates to bispecific molecules that are capable of localizing an immune effector cell that expresses an activating receptor to a virally infected cell, so as to thereby facilitate the killing of the virally infected cell. In a preferred embodiment, such localization is accomplished using bispecific molecules that are immunoreactive with an activating receptor of an immune effector cell and to an antigen expressed by a cell infected with a virus wherein the antigen is detectably present on the cell infected with the virus at a level that is greater than the level at which the antigen is detected on the virus by the bispecific molecules, and to the use of such bispecific molecules in the treatment of latent viral infections.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: August 4, 2020
    Assignees: MacroGenics, Inc., Duke University
    Inventors: Scott Koenig, Leslie S. Johnson, Chia-Ying Kao Lam, Liqin Liu, Jeffrey Lee Nordstrom, Barton F. Haynes, Guido Ferrari
  • Publication number: 20200231675
    Abstract: The present invention is directed to selected anti-PD-1 antibodies capable of binding to both cynomolgus monkey PD-1 and to human PD-1: PD-1 mAb 1, PD-1 mAb 2, PD-1 mAb 3, PD-1 mAb 4, PD-1 mAb 5, PD-1 mAb 6, PD-1 mAb 7, PD-1 mAb 8, PD-1 mAb 9, PD-1 mAb 10, PD-1 mAb 11, PD-1 mAb 12, PD-1 mAb 13, PD-1 mAb 14, or PD-1 mAb 15, and to humanized and chimeric versions of such antibodies. The invention additionally pertains to PD-1-binding molecules that comprise PD-1 binding fragments of such anti-PD-1 antibodies, immunocongugates, and to bispecific molecules, including diabodies, BiTEs, bispecific antibodies, etc., that comprise (i) such PD-1-binding fragments, and (ii) a domain capable of binding an epitope of a molecule involved in regulating an immune check point present on the surface of an immune cells. The present invention also pertains to methods of using molecules that bind PD-1 for stimulating immune responses, as well as methods of detecting PD-1.
    Type: Application
    Filed: January 24, 2020
    Publication date: July 23, 2020
    Applicant: MACROGENICS, INC
    Inventors: Kalpana Shah, Douglas H. Smith, Ross La Motte-Mohs, Leslie S. Johnson, Paul A. Moore, Ezio Bonvini, Scott Koenig
  • Patent number: 10717778
    Abstract: The invention is directed to bispecific molecules comprising an HIV-1 envelope targeting arm and an arm targeting an effector cell, compositions comprising these bispecific molecules and methods of use. In certain aspects, the bispecific molecules of the present invention can bind to two different targets or epitopes on two different cells wherein the first epitope is expressed on a different cell type than the second epitope, such that the bispecific molecules can bring the two cells together. In certain aspects, the bispecific molecules of the present invention can bind to two different cells, wherein the bispecific molecules comprises an arm with the binding specificity of A32, 7B2, CH27, CH28, or CH44.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: July 21, 2020
    Assignees: DUKE UNIVERSITY, MACROGENICS, INC., THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL
    Inventors: Barton F. Haynes, Guido Ferrari, Scott Koenig, Leslie S. Johnson, Chia-Ying Kao Lam, Julia A. Sung, David M. Margolis, Liqin Liu, Jeffrey Lee Nordstrom
  • Patent number: 10711069
    Abstract: The present invention relates to methods of treating or preventing cancer and other diseases using molecules, particularly polypeptides, more particularly immunoglobulins (e.g., antibodies), comprising a variant Fc region, wherein said variant Fc region comprises at least one amino acid modification relative to a wild-type Fc region, which variant Fc region binds an Fc?R that activates a cellular effector (“Fc?RActivating,” such as Fc?RIIA or Fc?RIIIA) and an Fc?R that inhibits a cellular effector (“Fc?RInhibiting,” such as Fc?RIIA) with an altered Ratio of Affinities relative to the respective binding affinities of such Fc?R for the Fc region of the wild-type immunoglobulin. The methods of the invention are particularly useful in preventing, treating, or ameliorating one or more symptoms associated with a disease, disorder, or infection where either an enhanced efficacy of effector cell function mediated by Fc?R is desired (e.g.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: July 14, 2020
    Assignee: MacroGenics, Inc.
    Inventors: Jeffrey B. Stavenhagen, Scott Koenig
  • Publication number: 20200216537
    Abstract: CD19×CD3 bi-specific monovalent diabodies, and particularly, CD19×CD3 bi-specific monovalent Fc diabodies, are capable of simultaneous binding to CD19 and CD3, and are used in the treatment of hematologic malignancies.
    Type: Application
    Filed: March 3, 2020
    Publication date: July 9, 2020
    Applicant: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Ezio Bonvini, Chia-Ying Kao Lam, Paul A. Moore, Liqin Liu, Scott Koenig
  • Publication number: 20200131265
    Abstract: The present invention relates to antibodies or fragments thereof that specifically bind Fc?RIIB, particularly human Fc?RIIB, with greater affinity than said antibodies or fragments thereof bind Fc?RIIA, particularly human Fc?RIIA. The invention provides methods of enhancing the therapeutic effect of therapeutic antibodies by administering the antibodies of the invention to enhance the effector function of the therapeutic antibodies. The invention also provides methods of enhancing efficacy of a vaccine composition by administering the antibodies of the invention.
    Type: Application
    Filed: June 11, 2019
    Publication date: April 30, 2020
    Applicant: MacroGenics, Inc.
    Inventors: Scott Koenig, Maria Concetta Veri
  • Patent number: 10633443
    Abstract: CD 19×CD3 bi-specific monovalent diabodies, and particularly, CD 19×CD3 bi-specific monovalent Fc diabodies, are capable of simultaneous binding to CD 19 and CD3, and are used in the treatment of hematologic malignancies.
    Type: Grant
    Filed: September 22, 2015
    Date of Patent: April 28, 2020
    Assignee: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Ezio Bonvini, Chia-Ying Kao Lam, Paul A. Moore, Liqin Liu, Scott Koenig
  • Patent number: 10577422
    Abstract: The present invention is directed to selected anti-PD-1 antibodies capable of binding to both cynomolgus monkey PD-1 and to human PD-1: PD-1 mAb 1, PD-1 mAb 2, PD-1 mAb 3, PD-1 mAb 4, PD-1 mAb 5, PD-1 mAb 6, PD-1 mAb 7, PD-1 mAb 8, PD-1 mAb 9, PD-1 mAb 10, PD-1 mAb 11, PD-1 mAb 12, PD-1 mAb 13, PD-1 mAb 14, or PD-1 mAb 15, and to humanized and chimeric versions of such antibodies. The invention additionally pertains to PD-1-binding molecules that comprise PD-1 binding fragments of such anti-PD-1 antibodies, immunocongugates, and to bispecific molecules, including diabodies, BiTEs, bispecific antibodies, etc., that comprise (i) such PD-1-binding fragments, and (ii) a domain capable of binding an epitope of a molecule involved in regulating an immune check point present on the surface of an immune cells. The present invention also pertains to methods of using molecules that bind PD-1 for stimulating immune responses, as well as methods of detecting PD-1.
    Type: Grant
    Filed: July 28, 2016
    Date of Patent: March 3, 2020
    Assignee: Macrogenics, Inc.
    Inventors: Kalpana Shah, Douglas H. Smith, Ross La Motte-Mohs, Leslie S. Johnson, Paul A. Moore, Ezio Bonvini, Scott Koenig
  • Publication number: 20190389952
    Abstract: The present invention is directed to a combination therapy involving the administration of a first molecule that specifically binds to human B7-H3 and a second molecule that that specifically binds to human PD-1 to a subject for the treatment of cancer and/or inflammation. The invention also concerns pharmaceutical compositions that comprise a first molecule that specifically binds to human B7-H3 and a second molecule that specifically binds to human PD-1 that are capable of mediating and more preferably enhancing, the activation of the immune system against cancer cells that are associated with any of a variety of human cancers. The invention also relates to the use of such pharmaceutical compositions to treat cancer and other diseases in recipient subjects.
    Type: Application
    Filed: October 6, 2016
    Publication date: December 26, 2019
    Applicant: MacroGenics, Inc.
    Inventors: James Vasselli, Jon Marc Wigginton, Ezio Bonvini, Scott Koenig
  • Publication number: 20190169292
    Abstract: The present invention is directed to bi-specific diabodies that comprise two or more polypeptide chains and which possess at least one Epitope-Binding Site that is immunospecific for an epitope of PD-1 and at least one Epitope-Binding Site that is immunospecific for an epitope of LAG-3 (i.e., a “PD-1×LAG-3 bi-specific diabody”). More preferably, the present invention is directed to bi-specific diabodies that comprise four polypeptide chains and which possess two Epitope-Binding Sites that are immunospecific for one (or two) epitope(s) of PD-1 and two Epitope-Binding Site that are immunospecific for one (or two) epitope(s) of LAG-3 (i.e., a “PD-1×LAG-3 bi-specific, tetra-valent diabody”). The present invention also is directed to such diabodies that additionally comprise an immunoglobulin Fc Domain (“bi-specific Fc diabodies and bi-specific, tetra-valent, Fc diabodies”).
    Type: Application
    Filed: November 13, 2018
    Publication date: June 6, 2019
    Applicant: MacroGenics, Inc.
    Inventors: Ezio Bonvini, Leslie S. Johnson, Kalpana Shah, Ross La Motte-Mohs, Paul A. Moore, Scott Koenig
  • Publication number: 20190161548
    Abstract: The present invention is directed to bispecific molecules (e.g., diabodies, bispecific antibodies, trivalent binding molecules, etc.) that possess at least one epitope-binding site that is immunospecific for an epitope of PD-1 and at least one epitope-binding site that is immunospecific for an epitope of CTLA-4 (i.e., a “PD-1×CTLA-4 bispecific molecule”). The PD-1×CTLA-4 bispecific molecules of the present invention are capable of simultaneously binding to PD-1 and to CTLA-4, particularly as such molecules are arrayed on the surfaces of human cells. The invention is directed to pharmaceutical compositions that contain such PD-1×CTLA-4 bispecific molecules, and to methods involving the use of such bispecific molecules in the treatment of cancer and other diseases and conditions. The present invention also pertains to methods of using such PD-1×CTLA-4 bispecific molecules to stimulate an immune response.
    Type: Application
    Filed: December 12, 2016
    Publication date: May 30, 2019
    Applicant: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Gurunadh Reddy Chichili, Kalpana Shah, Ross La Motte-Mohs, Paul A. Moore, Ezio Bonvini, Scott Koenig