Patents by Inventor Scott Lefevre

Scott Lefevre has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240170444
    Abstract: A method includes providing a first bonding surface on a first substrate, the first bonding surface including a bonding layer that is thermally curable or photocurable. The method includes providing a second bonding surface on a second substrate. The method includes bonding the first substrate to the second substrate by making physical contact between the first bonding surface and second bonding surface. The method further includes applying thermal energy or light to the bonding layer.
    Type: Application
    Filed: May 19, 2023
    Publication date: May 23, 2024
    Applicant: Tokyo Electron Limited
    Inventors: Scott LEFEVRE, Adam GILDEA, Satohiko HOSHINO, Sophia MADELONE, Yuji MIMURA
  • Publication number: 20230369064
    Abstract: A method of processing a substrate that includes: exposing a substrate to a first plasma including carbon, the substrate including a first layer including a dielectric material and a second layer including a metal, the first plasma forming a first carbonaceous deposit over the first layer and a second carbonaceous deposit over the second layer; exposing the first carbonaceous deposit and the second carbonaceous deposit to a second plasma including halogen, the second plasma selectively etching the second carbonaceous deposit relative to the first carbonaceous deposit to expose a surface of the second layer; and exposing the first carbonaceous deposit and the exposed surface of the second layer to the second plasma to selectively etch the second layer relative to the first carbonaceous deposit, the first carbonaceous deposit protecting the first layer from being etched by the second plasma.
    Type: Application
    Filed: May 12, 2022
    Publication date: November 16, 2023
    Inventors: Scott Lefevre, Angelique Raley
  • Patent number: 11626271
    Abstract: Embodiments are disclosed for reducing substrate breaks which result from inadequate de-chucking. Contaminants are removed from the surface of a chuck by exposing the chuck to a plasma process that comprises a hydrogen (H)-containing plasma. The chuck is subjected to the hydrogen-based plasma when no substrate is on the chuck. In one embodiment, the plasma is a hydrocarbon-based plasma. Hydrogen in the hydrocarbon plasma may react with and remove the contaminants. The process may further include an additional plasma step for removal of any newly formed materials that may result from the hydrocarbon plasma. The removal step may be, for example, a subsequent plasma ash step. In one embodiment, the chuck is an electrostatic chuck and the contaminants comprise fluorine. By removing contaminants from the chuck surface, improved substrate de-chucking occurs. This improvement correspondingly leads to less substrate breakage when removing substrates from the chuck.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: April 11, 2023
    Assignee: Tokyo Electron Limited
    Inventors: Scott Lefevre, Akiteru Ko
  • Publication number: 20210398784
    Abstract: Embodiments are disclosed for reducing substrate breaks which result from inadequate de-chucking. Contaminants are removed from the surface of a chuck by exposing the chuck to a plasma process that comprises a hydrogen (H)-containing plasma. The chuck is subjected to the hydrogen-based plasma when no substrate is on the chuck. In one embodiment, the plasma is a hydrocarbon-based plasma. Hydrogen in the hydrocarbon plasma may react with and remove the contaminants. The process may further include an additional plasma step for removal of any newly formed materials that may result from the hydrocarbon plasma. The removal step may be, for example, a subsequent plasma ash step. In one embodiment, the chuck is an electrostatic chuck and the contaminants comprise fluorine. By removing contaminants from the chuck surface, improved substrate de-chucking occurs. This improvement correspondingly leads to less substrate breakage when removing substrates from the chuck.
    Type: Application
    Filed: May 20, 2021
    Publication date: December 23, 2021
    Inventors: Scott Lefevre, Akiteru Ko