Patents by Inventor Scott M. DELAPP

Scott M. DELAPP has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240103272
    Abstract: A display may include illumination optics (36), a spatial modulator (40) and a waveguide (26). The illumination optics may produce illumination that is modulated by the spatial modulator to produce image light. The waveguide may direct the image light towards an eye box. The illumination optics may include light sources (58) an X-plate (44), and at least one Fresnel lens (60) interposed between the light sources and the X-plate. The Fresnel lenses may minimize the size of the illumination optics while still exhibiting satisfactory optical performance. The spatial light modulator may include a reflective display panel (50) and a powered prism (48) with a reflective coating on a curved reflective surface. The powered prism may optimize f-number while minimizing the volume of the spatial light modulator. The collimating optics may include a diffractive optical element (56) that compensates for thermal effects and chromatic dispersion in the display.
    Type: Application
    Filed: November 24, 2021
    Publication date: March 28, 2024
    Inventors: Guolin Peng, Vikrant Bhakta, Scott M. DeLapp, Hyungryul Choi, Di Hu
  • Publication number: 20240053823
    Abstract: An eye tracking system for detecting position and movements of a user's eyes in a head-mounted display (HMD). The eye tracking system includes at least one eye tracking camera, an illumination source that emits infrared light towards the user's eyes, and diffraction gratings located at the eyepieces. The diffraction gratings redirect or reflect at least a portion of infrared light reflected off the user's eyes, while allowing visible light to pass. The cameras capture images of the user's eyes from the infrared light that is redirected or reflected by the diffraction gratings.
    Type: Application
    Filed: October 24, 2023
    Publication date: February 15, 2024
    Applicant: Apple Inc.
    Inventors: Kathrin Berkner-Cieslicki, Se Baek Oh, Scott M. DeLapp, Christopher F. Griffo, Bradley C. Steele, Ting Sun, Kenichi Saito, Noah D. Bedard
  • Publication number: 20230418078
    Abstract: A head-mounted device may have head-mounted support structures configured to be worn on a head of a user. The head-mounted device may have stereo optical components such as left and right cameras or left and right display systems. The optical components may have respective left and right pointing vectors. Deformation of the support structures may cause the camera pointing vectors and/or the display system pointing vectors to become misaligned. Sensor circuitry such as strain gauge circuitry may measure pointing vector misalignment. Control circuitry may control the cameras and/or the display systems to compensate for measured changes in pointing vector misalignment.
    Type: Application
    Filed: September 12, 2023
    Publication date: December 28, 2023
    Inventors: Christopher Patton, Clas M. Oldenbo, Scott M. DeLapp
  • Patent number: 11852819
    Abstract: An electronic device may include a display module that produces foveated images having high and low resolution regions. The module may include a reflective display panel that produces first reflected light during first time periods and second reflected light during second time periods. The first reflected light may reflect off of a beam splitter to form the low resolution region of the foveated image. The second reflected light may be transmitted by the beam splitter, de-magnified by a lens, and redirected by an optical steering element to produce the high resolution region at a desired, adjustable, location in the foveated image. The reflective display panel may be replaced by sets of emissive display panels that concurrently display the high and low resolution regions in the foveated image. The sets of emissive display panels may be replaced by front-lit reflective display panels.
    Type: Grant
    Filed: September 20, 2021
    Date of Patent: December 26, 2023
    Inventors: Graham B. Myhre, Guolin Peng, Hyungryul Choi, Scott M. DeLapp, Vikrant Bhakta
  • Patent number: 11852816
    Abstract: The display may include a display module and a waveguide. The module may produce first light of first wavelengths during first time periods and may produce second light of second wavelengths during second time periods interleaved with the first time periods. Diffractive gratings or a dichroic wedge may redirect the first light into the waveguide at a first angle and may redirect the second light into the waveguide at a second angle separated from the first angle by a separation angle. The separation angle may be equal to half the angle subtended by the projection of a pixel in the module. The first and second time periods may alternate faster than the response of the human eye. This may configure the first and second image light to collectively provide images at an eye box with an increased effective resolution without increasing the space or power consumed by the display module.
    Type: Grant
    Filed: July 12, 2021
    Date of Patent: December 26, 2023
    Assignee: Apple Inc.
    Inventors: Scott M. DeLapp, Guolin Peng, Hyungryul Choi, Vikrant Bhakta
  • Patent number: 11846782
    Abstract: A head-mounted device may have head-mounted support structures configured to be worn on a head of a user. The head-mounted device may have stereo optical components such as left and right cameras or left and right display systems. The optical components may have respective left and right pointing vectors. Deformation of the support structures may cause the camera pointing vectors and/or the display system pointing vectors to become misaligned. Sensor circuitry such as strain gauge circuitry may measure pointing vector misalignment. Control circuitry may control the cameras and/or the display systems to compensate for measured changes in pointing vector misalignment.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: December 19, 2023
    Assignee: Apple Inc.
    Inventors: Christopher Patton, Clas M. Oldenbo, Scott M. DeLapp
  • Patent number: 11829528
    Abstract: An eye tracking system for detecting position and movements of a user's eyes in a head-mounted display (HMD). The eye tracking system includes at least one eye tracking camera, an illumination source that emits infrared light towards the user's eyes, and diffraction gratings located at the eyepieces. The diffraction gratings redirect or reflect at least a portion of infrared light reflected off the user's eyes, while allowing visible light to pass. The cameras capture images of the user's eyes from the infrared light that is redirected or reflected by the diffraction gratings.
    Type: Grant
    Filed: April 11, 2022
    Date of Patent: November 28, 2023
    Assignee: Apple Inc.
    Inventors: Kathrin Berkner-Cieslicki, Se Baek Oh, Scott M. DeLapp, Christopher F. Griffo, Bradley C. Steele, Ting Sun, Kenichi Saito, Noah D. Bedard
  • Patent number: 11822079
    Abstract: An electronic device may have a display that provides image light to a waveguide. First and second liquid crystal lenses may be mounted to opposing surfaces of the waveguide. An coupler may couple the image light out of the waveguide through the first lens. The second lens may convey world light to the first lens. Control circuitry may control the first lens to apply a first optical power to the image light and the world light and may control the second lens to apply a second optical power to the world light that cancels out the first optical power. Each lens may include two layers of liquid crystal molecules having antiparallel pretilt angles. The pretilt angles and rubbing directions of the first lens may be antiparallel to corresponding pretilt angles and rubbing directions of the second lens about the waveguide.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: November 21, 2023
    Assignee: Apple Inc.
    Inventors: Jin Yan, Young Cheol Yang, Igor Stamenov, Scott M. DeLapp, Francesco Aieta, Bradley C. Steele, Enkhamgalan Dorjgotov, Se Baek Oh
  • Patent number: 11803056
    Abstract: An electronic device may have a display that emits image light, a waveguide, and an input coupler that couples the image light into the waveguide. Beam splitter structures may be embedded within the waveguide. The beam splitter structures may partially reflect the image light multiple times and may serve to generate replicated beams of light that are coupled out of the waveguide by an output coupler. The beam splitter structures may replicate the beams across two dimensions to provide an eye box with uniform-intensity light from the display across its area. The beam splitter structures may include stacked partially reflective beam splitter layers, sandwiched transparent substrate layers having different indices of refraction, a thick volume hologram interposed between substrate layers, or combinations of these or other structures. The reflectivity of the beam splitter structures may vary discretely or continuously across the lateral area of the waveguide.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: October 31, 2023
    Assignee: Apple Inc.
    Inventors: Guolin Peng, Eric J. Hansotte, Francesco Aieta, Graham B. Myhre, Hyungryul Choi, Nan Zhu, Paul J. Gelsinger-Austin, Se Baek Oh, Scott M. DeLapp, Bradley C. Steele
  • Publication number: 20230341689
    Abstract: An electronic device may provide foveated images at an eye box. The device may have a first display module that produces a low resolution portion of the image and a second display module that produces a high resolution portion of the image. A reflective input coupling prism may be mounted to a waveguide. A steering mirror may overlap the prism. The mirror may receive the high resolution portion through the waveguide and the prism. The mirror may reflect the high resolution portion back into the waveguide and may be adjusted to shift a location of the high resolution portion within the image. For example, the steering mirror may adjust the position of the high resolution portion to align with the gaze direction at the eye box. A reflective surface of the prism may reflect the low resolution portion of the image into the waveguide.
    Type: Application
    Filed: January 9, 2023
    Publication date: October 26, 2023
    Inventors: Vikrant Bhakta, Guolin Peng, Hyungryul Choi, Scott M. DeLapp
  • Publication number: 20230333302
    Abstract: A display may include a waveguide for providing light to an eye box. The display may include polarization recycling structures having a polarizing beam splitter and a prism. The polarizing beam splitter may transmit a first portion of unpolarized light as first image light having a first polarization and may reflect a second portion of the unpolarized light as second image light having a second polarization. One or more waveplates may be mounted to the prism for transmitting the second image light. Upon transmission by the waveplate(s), the second image light may have the same polarization as the first image light. An input coupler may couple the first and second image light into the waveguide. Providing polarized light to the waveguide may maximize the optical efficiency of the waveguide. The polarization recycling structures may maximize the amount of the image light that is coupled into the waveguide.
    Type: Application
    Filed: March 22, 2023
    Publication date: October 19, 2023
    Inventors: Vikrant Bhakta, Guolin Peng, Hyungryul Choi, Scott M. DeLapp
  • Publication number: 20230314810
    Abstract: A display may include a waveguide, a diffractive input coupler, and an output coupler. The input coupler may diffract image light into the waveguide. The output coupler may diffract the image light out of the waveguide and towards an eye box. The output coupler may include a first volume hologram with a first grating vector and a second volume hologram with a second grating vector. The first and second grating vectors may be oriented at the same angle from opposing sides of an axis. The input coupler may have a first pitch. The first and second volume holograms may have a second pitch. The second pitch may be constant across the output coupler. In order to mitigate dispersion by the input coupler, the second pitch may be equal to twice the first pitch times a cosine of the angle.
    Type: Application
    Filed: March 9, 2023
    Publication date: October 5, 2023
    Inventors: Scott M. DeLapp, Se Baek Oh
  • Patent number: 11740466
    Abstract: An electronic device may include a display module that generates light and an optical system that redirects the light towards an eye box. The system may include an input coupler that couples the light into the waveguide. The input coupler may include a prism on the waveguide and a scanning mirror. The scanning mirror may receive the light through the waveguide and the prism and may reflect the light into the waveguide through the prism while being rotated over a set of orientations. The scanning mirror may fill a relatively large field of view eye box with a corresponding image frame despite the limited field of view of the image light produced by the display module. The orientation of the scanning mirror may be adjusted based on gaze tracking data.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: August 29, 2023
    Assignee: Apple Inc.
    Inventors: Vikrant Bhakta, Guolin Peng, Hyungryul Choi, Scott M. DeLapp
  • Patent number: 11740467
    Abstract: An electronic device may have a pixel array. A light source may illuminate the pixel array to produce image light. The image light may pass through a multi-element lens and may be coupled into a waveguide using an input coupler such as a prism. An output coupler such as a diffraction grating may couple the image light out of the waveguide and towards a user. The user may view the image light and may observe real-world objects through the waveguide. The waveguide may have locally modified portions that define an aperture stop at a distance from an exit surface of the multi-element lens. The multi-element lens may have first and second achromatic doublets and first and second singlets between the first and second achromatic doublets. The lens elements of the multi-element lens may include lens elements with aspheric surfaces.
    Type: Grant
    Filed: April 15, 2021
    Date of Patent: August 29, 2023
    Assignee: Apple Inc.
    Inventors: Guolin Peng, Hyungryul Choi, Scott M. DeLapp, Tyler G. Anderson
  • Patent number: 11467407
    Abstract: An electronic device may have a display system that produces images. The display system may have one or more pixel arrays such as liquid-crystal-on-silicon pixel arrays. Images from the display system may be coupled into a waveguide by an input coupler and may be coupled out of the waveguide using an output coupler. The input and output couplers may be formed from volume phase holographic gratings. An additional grating may be used to shift light that would otherwise pass above or below the user's field of view towards the viewer. Holographic gratings in the waveguide may have fringes with constant pitch and variable period. The period at a given portion of the grating may be Bragg-matched to maximize diffraction efficiency for light of a given incident angle.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: October 11, 2022
    Assignee: Apple Inc.
    Inventors: Scott M. DeLapp, Byron R. Cocilovo, Se Baek Oh, Bradley C. Steele
  • Publication number: 20220236799
    Abstract: An eye tracking system for detecting position and movements of a user's eyes in a head-mounted display (HMD). The eye tracking system includes at least one eye tracking camera, an illumination source that emits infrared light towards the user's eyes, and diffraction gratings located at the eyepieces. The diffraction gratings redirect or reflect at least a portion of infrared light reflected off the user's eyes, while allowing visible light to pass. The cameras capture images of the user's eyes from the infrared light that is redirected or reflected by the diffraction gratings.
    Type: Application
    Filed: April 11, 2022
    Publication date: July 28, 2022
    Applicant: Apple Inc.
    Inventors: Kathrin Berkner-Cieslicki, Se Baek Oh, Scott M. DeLapp, Christopher F. Griffo, Bradley C. Steele, Ting Sun, Kenichi Saito, Noah D. Bedard
  • Patent number: 11360557
    Abstract: An eye tracking system for detecting position and movements of a user's eyes in a head-mounted display (HMD). The eye tracking system includes at least one eye tracking camera, an illumination source that emits infrared light towards the user's eyes, and diffraction gratings located at the eyepieces. The diffraction gratings redirect or reflect at least a portion of infrared light reflected off the user's eyes, while allowing visible light to pass. The cameras capture images of the user's eyes from the infrared light that is redirected or reflected by the diffraction gratings.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: June 14, 2022
    Assignee: Apple Inc.
    Inventors: Kathrin Berkner-Cieslicki, Se Baek Oh, Scott M. DeLapp, Christopher F. Griffo, Bradley C. Steele, Ting Sun, Kenichi Saito, Noah D. Bedard
  • Publication number: 20220011496
    Abstract: An electronic device may include a waveguide with an input coupler and an output coupler. The input coupler may receive the image light from imaging optics. The input coupler may be an input coupling prism and the imaging optics may include lens elements. World light may be viewable at an eye box through the output coupler. Biasing, compensation, and/or prescription lenses may overlap the output coupler. The input coupling prism, the lens elements in the imaging optics, and/or one or more of the biasing, compensation, and prescription lenses may be formed from gradient index (GRIN) material. The GRIN material may have a gradient refractive index that varies in one or more gradient directions. Use of GRIN materials may minimize the volume required to form the device without sacrificing optical performance. In addition, the GRIN materials may compensate for dispersion and aberrations in the device.
    Type: Application
    Filed: September 22, 2021
    Publication date: January 13, 2022
    Inventors: Vikrant Bhakta, Scott M. DeLapp, Jonathan B. Pfeiffer, Hyungryul Choi, Guolin Peng
  • Publication number: 20220004007
    Abstract: An electronic device may include a display module that generates light and an optical system that redirects the light towards an eye box. The system may include an input coupler on a waveguide and a lens that directs the light towards the input coupler. The input coupler may include a prism having a reflective surface that reflects the light into the waveguide. The reflective surface may be curved to provide the light with an optical power. The prism may be configured to expand a field of view of the light. A birefringent beam displacer may expand the effective pupil size of the light. The lens may include lens elements that converge the light at a location between the lens elements and the waveguide. A switchable panel may be placed at the location and toggled between first and second orientations to increase the effective resolution of the light.
    Type: Application
    Filed: September 16, 2021
    Publication date: January 6, 2022
    Inventors: Vikrant Bhakta, Guolin Peng, Hyungryul Choi, Kevin A. Keilbach, Scott M. DeLapp
  • Publication number: 20220004005
    Abstract: An electronic device may include an emissive display panel that emits light, a waveguide with an output coupler that directs the light towards an eye box, and an input coupler that couples the light into the waveguide. A lens directs the light towards the input coupler. Optical components optically coupled between the display panel and the lens may provide the image light with a field angle dependent pupil size upon coupling of the image light into the waveguide by the input coupler. This prevents light that would otherwise pass into the waveguide at angles unsuitable for total internal reflection from passing to the lens, thereby mitigating stray light in the system and optimizing contrast in the image light received at the eye box. The optical components may include an array of apertures, an array of microlenses, an array of tapered optical tunnels, or an array of optical fibers.
    Type: Application
    Filed: September 15, 2021
    Publication date: January 6, 2022
    Inventors: Vikrant Bhakta, Guolin Peng, Hyungryul Choi, Scott M. DeLapp