Patents by Inventor Scott M. Schillak

Scott M. Schillak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10835149
    Abstract: Apparatus and method for imaging a patient in an MRI system. This includes a frame, and at least one assembly that includes a patient-interface positioner connected to a reference position on the frame, a first lockable joint on the positioner; and a patient interface connected to a patient-proximal end of the positioner by a second joint, wherein the first patient-interface is moveably positioned to a selected pitch angle, a selected yaw angle, and a selected one of a plurality of distances relative to the reference position on the frame. The first lockable joint is configured to be tightened to yieldably hold the first patient-interface at the selected pitch and yaw angles, and at the selected one of the plurality of distances, relative to the reference position. Optionally a second substantially similar patient-interface and assembly are provided. The earpiece(s) optionally include audio transducer(s) and/or RF coil(s).
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: November 17, 2020
    Assignee: Life Services, LLC
    Inventors: Brandon J. Tramm, Matthew T. Waks, Charles A. Lemaire, Scott M. Schillak
  • Patent number: 10827948
    Abstract: A method and apparatus for receiving (RX) radio-frequency (RF) signals suitable for MRI and/or MRS from a plurality of MRI “coil loops” in each of a plurality of coil parts, each coil part having a subset of the total number of coil loops. In some embodiments, a first base part, optionally having no coils, is used to provide support of the plurality of coil parts, wherein the plurality of coil parts include a second part holding back-of-the-head coil loops, a third part holding right-side-of-the-head coil loops, a fourth part holding right-side-of-the-head coil loops, and a fifth part holding top-of-the-head coil loops. In some embodiments, the system provides for repeatable positioning, frequency tuning, and impedance matching such that experimental conditions can be replicated for later examinations of each of a plurality of patients having differing impacts on positioning, tuning and matching of the various coil parts.
    Type: Grant
    Filed: November 25, 2016
    Date of Patent: November 10, 2020
    Assignee: Life Services, LLC
    Inventors: Brandon J. Tramm, Charles A. Lemaire, Matthew T. Waks, Scott M. Schillak
  • Patent number: 10649052
    Abstract: A method and apparatus for processing radio-frequency (RF) signals suitable for magnetic-resonance imaging (MRI) and/or magnetic-resonance spectroscopy (MRS) from radio-frequency (RF) coils that have strongly-coupled coil loop pairs, each pair including a transmit loop and a receive loop, wherein the transmit loop and the receive loop are of equal sizes and shapes and in close proximity to each other, and wherein a suitable attenuated and phase-adjusted version of a transmit pulse is subtracted from a receive signal obtained from tissue being examined to improve signal-to-noise ratio (SNR) of the received signal.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: May 12, 2020
    Assignee: Life Services, LLC
    Inventor: Scott M. Schillak
  • Patent number: 10641846
    Abstract: A method and apparatus for receiving (RX) radio-frequency (RF) signals suitable for MRI and/or MRS from a plurality of MRI “coil elements” (antennae), each contained in one or a plurality of body-coil parts, wherein the body-coil parts are easily assemble-able into a body-coil assembly (e.g., in some embodiments, a cylindrical body-coil assembly) with shield elements that are overlapped and/or concentric, and wherein the body-coil assembly is readily disassemble-able for easier shipping, and wherein the body-coil parts are optionally usable individually as transmit (TX) and/or receive (RX) coil elements for MRI. In some embodiments, the system provides for repeatable assembly and disassembly for ease of maintenance (such as frequency tuning and impedance matching) such that the body-coil assembly can be fully assembled and tested, then taken apart for less costly and easier shipping (with reduced risk of damage) and then reassembled at the destination for operation in an MRI system.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: May 5, 2020
    Assignee: Life Services LLC
    Inventors: Brandon J. Tramm, Charles A. Lemaire, Matthew T. Waks, Scott M. Schillak
  • Patent number: 10627463
    Abstract: Apparatus and method that are more efficient and flexible, and obtain and connect high-power RF transmit signals (TX) to RF-coil devices in an MR machine or other devices and simultaneously receive signals (RX) and separate net receive signals NRX) of interest by subtracting or filtering to remove the subtractable portion of the transmit signal (STX) from the RX and preamplifying the NRX and signal processing the preamplified NRX. In some embodiments, signal processing further removes artifacts of the transmitted signal, e.g., by digitizing the NRX signal, storing the digitized NRX signal in a memory, and performing digital signal processing. In some embodiments, the present invention also includes pre-distorting the TX signals in order to be better able to identify and/or remove the remaining artifacts of the transmitted signal from the NRX signal. This solution also applies to other high-power RF-transmit-antennae signals.
    Type: Grant
    Filed: August 4, 2015
    Date of Patent: April 21, 2020
    Assignee: Life Services, LLC
    Inventors: Scott M. Schillak, John Thomas Vaughan, Charles A. Lemaire, Matthew T. Waks
  • Patent number: 10578687
    Abstract: A method and apparatus for receiving (RX) radio-frequency (RF) signals suitable for MRI and/or MRS from MRI “coil loops” (antennae) that are overlapped and/or concentric, and each of which has a preamplifier and frequency-tuning circuitry and an impedance-matching circuitry, but wherein the loops optionally sized differently and/or located at different elevations (distances from the patient's tissue) in order to extract signal from otherwise cross-coupled coil loops and to improve signal-to-noise ratio (SNR) in images made from the received signal.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: March 3, 2020
    Assignees: Life Services, LLC
    Inventors: David A. Feinberg, Scott M. Schillak
  • Publication number: 20190353721
    Abstract: A method and apparatus for receiving (RX) radio-frequency (RF) signals suitable for MRI and/or MRS from a plurality of MRI “coil elements” (antennae), each contained in one or a plurality of body-coil parts, wherein the body-coil parts are easily assemble-able into a body-coil assembly (e.g., in some embodiments, a cylindrical body-coil assembly) with shield elements that are overlapped and/or concentric, and wherein the body-coil assembly is readily disassemble-able for easier shipping, and wherein the body-coil parts are optionally usable individually as transmit (TX) and/or receive (RX) coil elements for MRI. In some embodiments, the system provides for repeatable assembly and disassembly for ease of maintenance (such as frequency tuning and impedance matching) such that the body-coil assembly can be fully assembled and tested, then taken apart for less costly and easier shipping (with reduced risk of damage) and then reassembled at the destination for operation in an MRI system.
    Type: Application
    Filed: May 24, 2019
    Publication date: November 21, 2019
    Inventors: Brandon J. Tramm, Charles A. Lemaire, Matthew T. Waks, Scott M. Schillak
  • Publication number: 20190242959
    Abstract: A method and apparatus for receiving (RX) radio-frequency (RF) signals suitable for MRI and/or MRS from MRI “coil loops” (antennae) that are overlapped and/or concentric, and each of which has a preamplifier and frequency-tuning circuitry and an impedance-matching circuitry, but wherein the loops optionally sized differently and/or located at different elevations (distances from the patient's tissue) in order to extract signal from otherwise cross-coupled coil loops and to improve signal-to-noise ratio (SNR) in images made from the received signal.
    Type: Application
    Filed: January 29, 2019
    Publication date: August 8, 2019
    Inventors: David A. Feinberg, Scott M. Schillak
  • Patent number: 10324146
    Abstract: A method and apparatus for receiving (RX) radio-frequency (RF) signals suitable for MRI and/or MRS from a plurality of MRI “coil elements” (antennae), each contained in one or a plurality of body-coil parts, wherein the body-coil parts are easily assemble-able into a body-coil assembly (e.g., in some embodiments, a cylindrical body-coil assembly) with shield elements that are overlapped and/or concentric, and wherein the body-coil assembly is readily disassemble-able for easier shipping, and wherein the body-coil parts are optionally usable individually as transmit (TX) and/or receive (RX) coil elements for MRI. In some embodiments, the system provides for repeatable assembly and disassembly for ease of maintenance (such as frequency tuning and impedance matching) such that the body-coil assembly can be fully assembled and tested, then taken apart for less costly and easier shipping (with reduced risk of damage) and then reassembled at the destination for operation in an MRI system.
    Type: Grant
    Filed: January 12, 2017
    Date of Patent: June 18, 2019
    Assignee: Life Services, LLC
    Inventors: Brandon J. Tramm, Charles A. Lemaire, Matthew T. Waks, Scott M. Schillak
  • Patent number: 10288711
    Abstract: A method and apparatus for processing radio-frequency (RF) signals suitable for magnetic-resonance imaging (MRI) and/or magnetic-resonance spectroscopy (MRS) from radio-frequency (RF) coils that have strongly-coupled coil loop pairs, each pair including a transmit loop and a receive loop, wherein the transmit loop and the receive loop are of equal sizes and shapes and in close proximity to each other, and wherein a suitable attenuated and phase-adjusted version of a transmit pulse is subtracted from a receive signal obtained from tissue being examined to improve signal-to-noise ratio (SNR) of the received signal.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: May 14, 2019
    Assignee: Life Services, LLC
    Inventor: Scott M. Schillak
  • Patent number: 10281534
    Abstract: A method and apparatus for transmitting and receiving RF signals suitable for MRI and/or MRS from MR “coils” (antennae) that are arranged in an array next to a tissue-sample-slice holder that constrains the front, back, and edges of the tissue sample and is configured to rotate in a “roll” direction (about an axis parallel to the main DC magnetic field) and optionally also rotate in a pitch direction (at varying angles up and down, left-to-right, or both, relative to the roll axis and thus to the main DC magnetic field); the system optionally includes temperature control (heat and/or cooling), an optical grid that is marked or etched into a cover glass that holds the sample (in some embodiments, the grid is visible in the MRI images as well), an electrical and/or optical stimulation means for delivering stimulation Some embodiments combine optical image data with MR image data.
    Type: Grant
    Filed: March 20, 2015
    Date of Patent: May 7, 2019
    Assignee: Life Services, LLC
    Inventors: Brandon J. Tramm, Scott M. Schillak, Matthew T. Waks, Charles A. Lemaire
  • Patent number: 10200006
    Abstract: Apparatus and method for a radially attachable RF trap attached from a side to a shielded RF cable. In some embodiments, the RF trap creates a high impedance on the outer shield of the RF cable at a frequency of RF signals carried on at least one inner conductor of the cable. In some embodiments, an RF-trap apparatus for blocking stray signals on a shielded RF cable that has a peripheral shield conductor and a inner conductor for carrying RF signals includes: a case; an LC circuit having a resonance frequency equal to RF signals carried on the inner conductor; projections that pierce and connect the LC circuit to the shield conductor; and an attachment device that holds the case to the cable with the LC circuit electrically connected to the shield conductor of the shielded RF cable.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: February 5, 2019
    Assignee: Life Services, LLC
    Inventors: Matthew T. Waks, Scott M. Schillak, Charles A. Lemaire
  • Patent number: 10191128
    Abstract: A method and apparatus for receiving (RX) radio-frequency (RF) signals suitable for MRI and/or MRS from MRI “coil loops” (antennae) that are overlapped and/or concentric, and each of which has a preamplifier and frequency-tuning circuitry and an impedance-matching circuitry, but wherein the loops optionally sized differently and/or located at different elevations (distances from the patient's tissue) in order to extract signal from otherwise cross-coupled coil loops and to improve signal-to-noise ratio (SNR) in images made from the received signal.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: January 29, 2019
    Assignee: Life Services, LLC
    Inventors: David A. Feinberg, Scott M. Schillak
  • Publication number: 20190021628
    Abstract: Apparatus and method for imaging a patient in an MRI system. This includes a frame, and at least one assembly that includes a patient-interface positioner connected to a reference position on the frame, a first lockable joint on the positioner; and a patient interface connected to a patient-proximal end of the positioner by a second joint, wherein the first patient-interface is moveably positioned to a selected pitch angle, a selected yaw angle, and a selected one of a plurality of distances relative to the reference position on the frame. The first lockable joint is configured to be tightened to yieldably hold the first patient-interface at the selected pitch and yaw angles, and at the selected one of the plurality of distances, relative to the reference position. Optionally a second substantially similar patient-interface and assembly are provided. The earpiece(s) optionally include audio transducer(s) and/or RF coil(s).
    Type: Application
    Filed: June 19, 2018
    Publication date: January 24, 2019
    Inventors: Brandon J. Tramm, Matthew T. Waks, Charles A. Lemaire, Scott M. Schillak
  • Patent number: 9999370
    Abstract: Apparatus and method for imaging a patient in an MRI system. This includes a frame, and at least one assembly that includes a patient-interface positioner connected to a reference position on the frame, a first lockable joint on the positioner; and a patient interface connected to a patient-proximal end of the positioner by a second joint, wherein the first patient-interface is moveably positioned to a selected pitch angle, a selected yaw angle, and a selected one of a plurality of distances relative to the reference position on the frame. The first lockable joint is configured to be tightened to yieldably hold the first patient-interface at the selected pitch and yaw angles, and at the selected one of the plurality of distances, relative to the reference position. Optionally a second substantially similar patient-interface and assembly are provided. The earpiece(s) optionally include audio transducer(s) and/or RF coil(s).
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: June 19, 2018
    Assignee: Life Services, LLC
    Inventors: Brandon J. Tramm, Matthew T. Waks, Charles A. Lemaire, Scott M. Schillak
  • Publication number: 20180070854
    Abstract: Apparatus and method for imaging a patient in an MRI system. This includes a frame, and at least one assembly that includes a patient-interface positioner connected to a reference position on the frame, a first lockable joint on the positioner; and a patient interface connected to a patient-proximal end of the positioner by a second joint, wherein the first patient-interface is moveably positioned to a selected pitch angle, a selected yaw angle, and a selected one of a plurality of distances relative to the reference position on the frame. The first lockable joint is configured to be tightened to yieldably hold the first patient-interface at the selected pitch and yaw angles, and at the selected one of the plurality of distances, relative to the reference position. Optionally a second substantially similar patient-interface and assembly are provided. The earpiece(s) optionally include audio transducer(s) and/or RF coil(s).
    Type: Application
    Filed: November 21, 2017
    Publication date: March 15, 2018
    Inventors: Brandon J. Tramm, Matthew T. Waks, Charles A. Lemaire, Scott M. Schillak
  • Patent number: 9820676
    Abstract: Apparatus and method for imaging a patient in an MRI system. This includes a frame, and at least one assembly that includes a patient-interface positioner connected to a reference position on the frame, a first lockable joint on the positioner; and a patient interface connected to a patient-proximal end of the positioner by a second joint, wherein the first patient-interface is moveably positioned to a selected pitch angle, a selected yaw angle, and a selected one of a plurality of distances relative to the reference position on the frame. The first lockable joint is configured to be tightened to yieldably hold the first patient-interface at the selected pitch and yaw angles, and at the selected one of the plurality of distances, relative to the reference position. Optionally a second substantially similar patient-interface and assembly are provided. The earpiece(s) optionally include audio transducer(s) and/or RF coil(s).
    Type: Grant
    Filed: November 19, 2014
    Date of Patent: November 21, 2017
    Assignee: Life Services, LLC
    Inventors: Brandon J. Tramm, Matthew T. Waks, Charles A. Lemaire, Scott M. Schillak
  • Publication number: 20170299670
    Abstract: A method and apparatus for receiving (RX) radio-frequency (RF) signals suitable for MRI and/or MRS from a plurality of MRI “coil elements” (antennae), each contained in one or a plurality of body-coil parts, wherein the body-coil parts are easily assemble-able into a body-coil assembly (e.g., in some embodiments, a cylindrical body-coil assembly) with shield elements that are overlapped and/or concentric, and wherein the body-coil assembly is readily disassemble-able for easier shipping, and wherein the body-coil parts are optionally usable individually as transmit (TX) and/or receive (RX) coil elements for MRI. In some embodiments, the system provides for repeatable assembly and disassembly for ease of maintenance (such as frequency tuning and impedance matching) such that the body-coil assembly can be fully assembled and tested, then taken apart for less costly and easier shipping (with reduced risk of damage) and then reassembled at the destination for operation in an MRI system.
    Type: Application
    Filed: January 12, 2017
    Publication date: October 19, 2017
    Inventors: Brandon J. Tramm, Charles A. Lemaire, Matthew T. Waks, Scott M. Schillak
  • Publication number: 20170077895
    Abstract: Apparatus and method for a radially attachable RF trap attached from a side to a shielded RF cable. In some embodiments, the RF trap creates a high impedance on the outer shield of the RF cable at a frequency of RF signals carried on at least one inner conductor of the cable. In some embodiments, an RF-trap apparatus for blocking stray signals on a shielded RF cable that has a peripheral shield conductor and a inner conductor for carrying RF signals includes: a case; an LC circuit having a resonance frequency equal to RF signals carried on the inner conductor; projections that pierce and connect the LC circuit to the shield conductor; and an attachment device that holds the case to the cable with the LC circuit electrically connected to the shield conductor of the shielded RF cable.
    Type: Application
    Filed: November 29, 2016
    Publication date: March 16, 2017
    Inventors: Matthew T. Waks, Scott M. Schillak, Charles A. Lemaire
  • Patent number: 9509271
    Abstract: Apparatus and method for a radially attachable RF trap attached from a side to a shielded RF cable. In some embodiments, the RF trap creates a high impedance on the outer shield of the RF cable at a frequency of RF signals carried on at least one inner conductor of the cable. In some embodiments, an RF-trap apparatus for blocking stray signals on a shielded RF cable that has a peripheral shield conductor and a inner conductor for carrying RF signals includes: a case; an LC circuit having a resonance frequency equal to RF signals carried on the inner conductor; projections that pierce and connect the LC circuit to the shield conductor; and an attachment device that holds the case to the cable with the LC circuit electrically connected to the shield conductor of the shielded RF cable.
    Type: Grant
    Filed: January 19, 2016
    Date of Patent: November 29, 2016
    Assignee: Life Services, LLC
    Inventors: Matthew T. Waks, Scott M. Schillak, Charles A. Lemaire