Patents by Inventor Scott McCall

Scott McCall has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11986904
    Abstract: Disclosed herein are embodiments of an Al—Ce—Ni alloy for use in additive manufacturing. The disclosed alloy embodiments provide fabricated objects, such as bulk components, comprising a heterogeneous microstructure and having good mechanical properties even when exposed to conditions used during the additive manufacturing process. Methods for making and using alloy embodiments also are disclosed herein.
    Type: Grant
    Filed: October 29, 2020
    Date of Patent: May 21, 2024
    Assignees: UT-Battelle, LLC, University of Tennessee Research Foundation, Iowa State University Research Foundation, Inc.
    Inventors: Ryan R. Dehoff, Hunter B. Henderson, Scott McCall, Richard Michi, Peeyush Nandwana, Ryan Ott, Alexander J. Plotkowski, Orlando Rios, Amit Shyam, Zachary C. Sims, Kevin D. Sisco, David Weiss, Ying Yang
  • Patent number: 11912983
    Abstract: The present technology relates to a method of separating a sample comprising oligonucleotides. The method includes injecting a polyphosphonic acid at a concentration of between about 0.01 M to about 1 M into the sample comprising oligonucleotides. The method also includes flowing the sample and polyphosphonic acid through a liquid chromatography column and separating the oligonucleotides.
    Type: Grant
    Filed: December 4, 2020
    Date of Patent: February 27, 2024
    Assignee: Waters Technologies Corporation
    Inventors: Michael Donegan, Martin Gilar, Matthew Lauber, Scott Mccall, Pamela Iraneta, Kerri Smith
  • Publication number: 20230393103
    Abstract: A device for separating analytes is disclosed. The device has a sample injector, sample injection needle, sample reservoir container in communication with the sample injector, chromatography column downstream of the sample injector, and fluid conduits connecting the sample injector and the column. The interior surfaces of the fluid conduits, sample injector, sample reservoir container, and column form a flow path having wetted surfaces. A portion of the wetted surfaces of the flow path are coated with an alkylsilyl coating that is inert to at least one of the analytes. The alkylsilyl coating has the Formula I: R1, R2, R3, R4, R5, and R6 are each independently selected from (C1-C6)alkoxy, —NH(C1-C6)alkyl, —N((C1-C6)alkyl)2, OH, ORA, and halo. RA represents a point of attachment to the interior surfaces of the fluidic system. At least one of R1, R2, R3, R4, R5, and R6 is ORA. X is (C1-C20)alkyl, —O[(CH2)2O]1-20, -(C1-C10)[NH(CO)NH(C1-C10)]1-20-, or -(C1-C10)[alkylphenyl(C1-C10)alkyl]1-20-.
    Type: Application
    Filed: June 7, 2023
    Publication date: December 7, 2023
    Applicant: Waters Technologies Corporation
    Inventors: Matthew A. Lauber, Mathew H. DeLano, Scott A. McCall, Jonathan Belanger, Theodore A. Dourdeville, Kerri Smith, Paul Rainville, Dimple Shah, Stephen J. Shiner, Catalin Doneanu, Michael Donegan
  • Patent number: 11761061
    Abstract: Disclosed herein are embodiments of aluminum-based alloys having improved intergranular corrosion resistance. Methods of making and using the disclosed alloy embodiments also are disclosed herein.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: September 19, 2023
    Assignees: UT-Battelle, LLC, University of Tennessee Research Foundation, Eck Industries Incorporated, Lawrence Livermore National Security, LLC, Iowa State University Research Foundation, Inc.
    Inventors: Orlando Rios, Hunter B. Henderson, David Weiss, Scott McCall, Eric Thomas Stromme, Zachary Cole Sims, Ryan Ott, Fanqiang Meng, Michael Kesler, Kevin Anderson
  • Patent number: 11709155
    Abstract: A device for separating analytes is disclosed. The device has a sample injector, sample injection needle, sample reservoir container in communication with the sample injector, chromatography column downstream of the sample injector, and fluid conduits connecting the sample injector and the column. The interior surfaces of the fluid conduits, sample injector, sample reservoir container, and column form a flow path having wetted surfaces. A portion of the wetted surfaces of the flow path are coated with an alkylsilyl coating that is inert to at least one of the analytes. The alkylsilyl coating has the Formula I: R1, R2, R3, R4, R5, and R6 are each independently selected from (C1-C6)alkoxy, —NH(C1-C6)alkyl, —N((C1-C6)alkyl)2, OH, ORA, and halo. RA represents a point of attachment to the interior surfaces of the fluidic system. At least one of R1, R2, R3, R4, R5, and R6 is ORA. X is (C1-C20)alkyl, —O[(CH2)2O]1-20—, —(C1-C10)[NH(CO)NH(C1-C10)]1-20—, or —(C1-C10)[alkylphenyl(C1-C10)alkyl]1-20-.
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: July 25, 2023
    Assignee: Waters Technologies Corporation
    Inventors: Matthew A. Lauber, Mathew H. DeLano, Scott A. McCall, Jonathan L. Belanger, Theodore A. Dourdeville, Kerri M. Smith, Paul D. Rainville, Dimple D. Shah, Stephen J. Shiner, Catalin Doneanu, Michael Donegan
  • Patent number: 11705250
    Abstract: A magnetic shielding material includes a material comprising manganese bismuth (MnBi) and tungsten (W), where a ratio of MnBi:W is in a range of 50:50 to about 70:30. A radiation shielding product includes a part including manganese bismuth (MnBi) and tungsten (W), and a plurality of layers having a defined thickness in a z-direction, wherein each layer extends along an x-y plane perpendicular to the z-direction. At least some of the plurality of layers form a functional gradient in the z-direction and/or along the x-y plane, and the functional gradient is defined by a first layer comprising a ratio of MnBi:W being less than 100:0 and an nth layer above the first layer comprising a ratio of MnBi:W greater than 0:100.
    Type: Grant
    Filed: December 4, 2020
    Date of Patent: July 18, 2023
    Assignees: Lawrence Livermore National Security, LLC, American Ceramic Technology
    Inventors: Scott McCall, Richard Culbertson
  • Patent number: 11608546
    Abstract: Disclosed herein are embodiments of an Al—Ce—Mn alloy for use in additive manufacturing. The disclosed alloy embodiments provide fabricated objects, such as bulk components, comprising a heterogeneous microstructure and having good mechanical properties even when exposed to conditions used during the additive manufacturing process. Methods for making and using alloy embodiments also are disclosed herein.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: March 21, 2023
    Assignees: UT-Battelle LLC, Eck Industries Incorporated, Iowa State University Research Foundation, Inc., Lawrence Livermore National Security, LLC, University of Tennessee Research Foundation
    Inventors: Lawrence Allard, Jr., Sumit Bahl, Ryan Dehoff, Hunter Henderson, Michael Kesler, Scott McCall, Peeyush Nandwana, Ryan Ott, Alex Plotkowski, Orlando Rios, Amit Shyam, Zachary Sims, Kevin Sisco, David Weiss, Ying Yang
  • Patent number: 11365463
    Abstract: The disclosure concerns methods for making a composition comprising a light metal and an intermetallic comprising the light metal and a light rare earth element. The composition also may include a plurality of nanoparticles comprising an oxide of the light metal. The method includes directly reducing a light rare earth element precursor compound in a melt of the light metal, thereby forming the light rare earth element and nanoparticles of the light metal oxide.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: June 21, 2022
    Assignees: UT-Battelle, LLC, University of Tennessee Research Foundation, Eck Industries Incorporated, Iowa State University Research Foundation, Inc., Colorado School of Mines, Lawrence Livermore National Security, LLC
    Inventors: Orlando Rios, Hunter B. Henderson, Michael S. Kesler, Bruce A. Moyer, Zachary Sims, David Weiss, Ryan Ott, Corby Anderson, Hao Cui, Scott McCall
  • Publication number: 20220168814
    Abstract: The present disclosure relates to an additive manufacturing system. The system incorporates a nozzle in communication with a quantity of feedstock material including granular metal powder particles. The nozzle is configured to deposit the granular metal powder particles on at least one of a build plate or a previously formed material layer, to form at least one layer of a part. The system also incorporates a magnetic field generator subsystem for producing a magnetic field configured to orient the granular metal powder particles in a desired orientation before fusing of the granular metal powder particles occurs.
    Type: Application
    Filed: November 30, 2020
    Publication date: June 2, 2022
    Inventors: Nikola DUDUKOVIC, Alexander BAKER, Joshua R. DEOTTE, Eric B. DUOSS, Scott MCCALL
  • Publication number: 20210214823
    Abstract: Disclosed herein are embodiments of an Al—Ce—Mn alloy for use in additive manufacturing. The disclosed alloy embodiments provide fabricated objects, such as bulk components, comprising a heterogeneous microstructure and having good mechanical properties even when exposed to conditions used during the additive manufacturing process. Methods for making and using alloy embodiments also are disclosed herein.
    Type: Application
    Filed: June 5, 2020
    Publication date: July 15, 2021
    Inventors: Lawrence Allard, JR., Sumit Bahl, Ryan Dehoff, Hunter Henderson, Michael Kesler, Scott McCall, Peeyush Nandwana, Ryan Ott, Alex Plotkowski, Orlando Rios, Amit Shyam, Zachary Sims, Kevin Sisco, David Weiss, Ying Yang
  • Publication number: 20210174979
    Abstract: A magnetic shielding material includes a material comprising manganese bismuth (MnBi) and tungsten (W), where a ratio of MnBi:W is in a range of 50:50 to about 70:30. A radiation shielding product includes a part including manganese bismuth (MnBi) and tungsten (W), and a plurality of layers having a defined thickness in a z-direction, wherein each layer extends along an x-y plane perpendicular to the z-direction. At least some of the plurality of layers form a functional gradient in the z-direction and/or along the x-y plane, and the functional gradient is defined by a first layer comprising a ratio of MnBi:W being less than 100:0 and an nth layer above the first layer comprising a ratio of MnBi:W greater than 0:100.
    Type: Application
    Filed: December 4, 2020
    Publication date: June 10, 2021
    Inventors: Scott McCall, Richard Culbertson
  • Publication number: 20210171932
    Abstract: The present technology relates to a method of separating a sample comprising oligonucleotides. The method includes injecting a polyphosphonic acid at a concentration of between about 0.01 M to about 1 M into the sample comprising oligonucleotides. The method also includes flowing the sample and polyphosphonic acid through a liquid chromatography column and separating the oligonucleotides.
    Type: Application
    Filed: December 4, 2020
    Publication date: June 10, 2021
    Applicant: Waters Technologies Corporation
    Inventors: Michael Donegan, Martin Gilar, Matthew Lauber, Scott Mccall, Pamela Iraneta, Kerri Smith
  • Publication number: 20210129270
    Abstract: Disclosed herein are embodiments of an Al—Ce—Ni alloy for use in additive manufacturing. The disclosed alloy embodiments provide fabricated objects, such as bulk components, comprising a heterogeneous microstructure and having good mechanical properties even when exposed to conditions used during the additive manufacturing process. Methods for making and using alloy embodiments also are disclosed herein.
    Type: Application
    Filed: October 29, 2020
    Publication date: May 6, 2021
    Inventors: Ryan R. Dehoff, Hunter B. Henderson, Scott McCall, Richard Michi, Peeyush Nandwana, Ryan Ott, Alexander J. Plotkowski, Orlando Rios, Amit Shyam, Zachary C. Sims, Kevin D. Sisco, David Weiss, Ying Yang
  • Publication number: 20210130934
    Abstract: Disclosed herein are embodiments of an Al—Ce—Cu alloy for use in additive manufacturing. The disclosed alloy embodiments provide fabricated objects, such as bulk components, comprising a heterogeneous microstructure and having good mechanical properties even when exposed to conditions used during the additive manufacturing process. Methods for making and using alloy embodiments also are disclosed herein.
    Type: Application
    Filed: October 29, 2020
    Publication date: May 6, 2021
    Inventors: Sumit Bahl, Ryan R. Dehoff, Hunter B. Henderson, Scott McCall, Ryan Ott, Alexander J. Plotkowski, Orlando Rios, Amit Shyam, Zachary C. Sims, Kevin D. Sisco, David Weiss, Ying Yang
  • Publication number: 20200332028
    Abstract: The present invention provides novel methods for the chromatographic analysis of glycans using high purity chromatographic materials comprising a chromatographic surface wherein the chromatographic surface comprises a hydrophobic surface group and one or more ionizable modifier and a labeling reagent which is capable of providing amphipathic and strongly basic labeling moieties to a sample to be analyzed.
    Type: Application
    Filed: April 21, 2017
    Publication date: October 22, 2020
    Inventors: Matthew A. Lauber, Scott A. McCall, Babajide Okandeji, Pamela C. Iraneta
  • Publication number: 20190086371
    Abstract: A device for separating analytes is disclosed. The device has a sample injector, sample injection needle, sample reservoir container in communication with the sample injector, chromatography column downstream of the sample injector, and fluid conduits connecting the sample injector and the column. The interior surfaces of the fluid conduits, sample injector, sample reservoir container, and column form a flow path having wetted surfaces. A portion of the wetted surfaces of the flow path are coated with an alkylsilyl coating that is inert to at least one of the analytes. The alkylsilyl coating has the Formula I: R1, R2, R3, R4, R5, and R6 are each independently selected from (C1-C6)alkoxy, —NH(C1-C6)alkyl, —N((C1-C6)alkyl)2, OH, ORA, and halo. RA represents a point of attachment to the interior surfaces of the fluidic system. At least one of R1, R2, R3, R4, R5, and R6 is ORA. X is (C1-C20)alkyl, —O[(CH2)2O]1-20—, —(C1-C10)[NH(CO)NH(C1-C10)]1-20-, or —(C1-C10)[alkylphenyl(C1-C10)alkyl]1-20-.
    Type: Application
    Filed: September 17, 2018
    Publication date: March 21, 2019
    Applicant: Waters Technologies Corporation
    Inventors: Matthew A. Lauber, Mathew H. DeLano, Scott A. McCall, Jonathan L. Belanger, Theodore A. Dourdeville, Kerri M. Smith, Paul D. Rainville, Dimple D. Shah, Stephen J. Shiner, Catalin Doneanu, Michael Donegan
  • Publication number: 20190085431
    Abstract: Disclosed herein are embodiments of aluminum-based alloys having improved intergranular corrosion resistance. Methods of making and using the disclosed alloy embodiments also are disclosed herein.
    Type: Application
    Filed: September 14, 2018
    Publication date: March 21, 2019
    Inventors: Orlando Rios, Hunter B. Henderson, David Weiss, Scott McCall, Eric Thomas Stromme, Zachary Cole Sims, Ryan Ott, Fanqiang Meng, Michael Kesler, Kevin Anderson
  • Publication number: 20190080807
    Abstract: An apparatus and method for shielding against radiation and providing thermal insulation is disclosed. The apparatus includes multiple layers including an inner layer, an outer layer, and a radiation shielding layer composed of materials such a tungsten sheet, multiple tungsten sheets, staggered rows of tungsten rods, and/or a polymer radiation shield composed of a polymer and radiation attenuating material. Insulation layers may also be incorporated into the apparatus. The method for protecting against radiation includes the steps of providing a radiation shielding apparatus and securing such apparatus to a radiation emitting structure.
    Type: Application
    Filed: September 14, 2017
    Publication date: March 14, 2019
    Inventors: Jerrald Scott McCall, Virgil Irick, Richard Culbertson
  • Patent number: 10183039
    Abstract: The method of the current disclosure provides for methods of increasing sulfilimine bonds in collagen IV using bromide containing agents and conditions that either promote peroxidasin cross-linking of collagen IV.
    Type: Grant
    Filed: July 14, 2014
    Date of Patent: January 22, 2019
    Assignee: VANDERBILT UNIVERSITY
    Inventors: Billy G. Hudson, Christopher F. Cummings, Gautam Bhave, A. Scott McCall
  • Publication number: 20180237893
    Abstract: Disclosed herein are embodiments of rapidly solidified alloys that comprise aluminum, a rare earth element, one or more additional alloying elements, such as aluminum, and an optional additive component. The alloy embodiments exhibit a unique microstructure as compared to microstructures obtained from other alloys that are not rapidly cooled. The disclosed aluminum-rare earth element alloys also exhibit improved mechanical properties without the need for post-processing heat treatments and further do not exhibit substantial coarsening.
    Type: Application
    Filed: February 21, 2018
    Publication date: August 23, 2018
    Inventors: Orlando Rios, Scott McCall, Ryan Ott, Zachary Cole Sims, Eric Thomas Stromme, Michael Kesler, Hunter B. Henderson, Michael McGuire