Patents by Inventor Scott T. Mazar

Scott T. Mazar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150335256
    Abstract: A system for detecting impending acute cardiac decompensation of a patient includes impedance circuitry, an activity sensor, and a processor system. The impedance circuitry measures a hydration signal of the patient, wherein the hydration signal corresponds to a tissue hydration of the patient. The activity sensor to measure an activity level of the patient, and the processor system includes a computer readable memory in communication with the impedance circuitry and the activity sensor, wherein the computer readable memory of the processor system embodies instructions to combine the hydration signal and the activity level of the patient to detect the impending acute cardiac decompensation.
    Type: Application
    Filed: July 31, 2015
    Publication date: November 26, 2015
    Inventors: Imad LIBBUS, Mark J. BLY, Kristofer J. JAMES, Scott T. MAZAR, Jerry S. WANG
  • Patent number: 9125566
    Abstract: Systems and methods of detecting an impending cardiac decompensation of a patient measure at least two of an electrocardiogram signal of the patient, a hydration signal of the patient, a respiration signal of the patient or an activity signal of the patient. The at least two of the electrocardiogram signal, the hydration signal, the respiration signal or the activity signal are combined with an algorithm to detect the impending cardiac decompensation.
    Type: Grant
    Filed: July 8, 2014
    Date of Patent: September 8, 2015
    Assignee: MEDTRONIC MONITORING, INC.
    Inventors: Imad Libbus, Mark J. Bly, Kristofer J. James, Scott T. Mazar, Jerry S. Wang
  • Patent number: 9114265
    Abstract: Embodiments of the invention provide methods, systems, and devices for enabling data communication between an IMD and a host computer. In one embodiment, a device is provided that comprises a frequency and protocol agile transceiver capable of communicating with an IMD via a first communications link and with a host computer via a second wireless communications link, wherein the first wireless communication link is configured for substantially shorter communication range than the second wireless communication link. An apparatus is provided according to another embodiment of the invention that comprises an interface between an IMD and a communications device, such as a wireless telephone or a two-way wireless pager. The interface can communicate directly with the IMD to retrieve clinical data stored in the IMD and can utilize the communications device to transmit the clinical data to a host computer.
    Type: Grant
    Filed: October 3, 2006
    Date of Patent: August 25, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Scott T. Mazar, Yatheendhar D. Manicka
  • Patent number: 9084583
    Abstract: Methods and devices for monitoring and/or treating patients comprise a switch to automatically start-up the device when the device contacts tissue. By automatically starting up the device, the device may be installed without the clinician and/or user turning on the device, such that the device can be easy to use. In many embodiments, the device comprises startup circuitry with very low current and/or power consumption, for example less than 100 pA. The startup circuitry can detect tissue contact and turn on circuitry that is used to monitor or treat the patient.
    Type: Grant
    Filed: September 23, 2014
    Date of Patent: July 21, 2015
    Assignee: MEDTRONIC MONITORING, INC.
    Inventors: Scott T. Mazar, Mark J. Bly, Arthur Lai
  • Publication number: 20150073251
    Abstract: Methods and devices for monitoring and/or treating patients comprise a switch to automatically start-up the device when the device contacts tissue. By automatically starting up the device, the device may be installed without the clinician and/or user turning on the device, such that the device can be easy to use. In many embodiments, the device comprises startup circuitry with very low current and/or power consumption, for example less than 100 pA. The startup circuitry can detect tissue contact and turn on circuitry that is used to monitor or treat the patient.
    Type: Application
    Filed: September 23, 2014
    Publication date: March 12, 2015
    Applicant: CORVENTIS, INC.
    Inventors: Scott T. Mazar, Mark J. Bly, Arthur Lai
  • Publication number: 20150073252
    Abstract: A device to measure tissue impedance comprises drive circuitry coupled to calibration circuitry, such that a calibration signal from the calibration circuitry corresponds to the current delivered through the tissue. Measurement circuitry can be coupled to measurement electrodes and the calibration circuitry, such that the tissue impedance can be determined in response to the measured calibration signal from the calibration circuitry and the measured tissue impedance signal from the measurement electrodes. Processor circuitry comprising a tangible medium can be configured to determine a complex tissue impedance in response to the calibration signal and the tissue impedance signal. The processor can be configured to select a frequency for the drive current, and the amount of drive current at increased frequencies may exceed a safety threshold for the drive current at lower frequencies.
    Type: Application
    Filed: November 14, 2014
    Publication date: March 12, 2015
    Inventor: Scott T. MAZAR
  • Publication number: 20150025404
    Abstract: Systems and related methods for analyzing data sensed from a device implanted in a patient, such as a cardiac pacing system. The system detects and evaluates electric signals within the patient that share a common event marker. By using algorithms and graphical presentation of the collected signals having common event markers, deviations in signals over time can be identified and evaluated in consideration of taking further action related to the patient and the implanted device. The system can also be used in conjunction with an advanced patient management system that includes a programmer or repeater capable of gathering information from the implanted device and transmitting the data to a host via a communications network for evaluation at a remote location.
    Type: Application
    Filed: October 8, 2014
    Publication date: January 22, 2015
    Inventors: Matthias Woellenstein, Howard D. Simms, JR., Scott T. Mazar, Robert J. Sweeney
  • Publication number: 20150015417
    Abstract: An adherent patient device is configured to adhere to the skin of the patient and measure electrocardiogram data, impedance data, accelerometer data, blood oxygen data and temperature data. The adherent device can communicate wirelessly with gateways and a local processor system, such that the patient can wander about the hospital and update the monitoring station with the patient data when the patient is ambulatory. The local processor system can be configured to customize alerts for the patient, for example to notify automatically a specialist in response to a special condition of the patient. The adherent device may comprise a unique adherent device identifier such that the customized alert can be sent based on the unique device identifier. Each of the gateways can be carried and may comprise a unique gateway identifier, such that the unique device identifier and the unique gateway identifier can be used to locate the ambulatory patient.
    Type: Application
    Filed: July 24, 2014
    Publication date: January 15, 2015
    Inventors: Imad LIBBUS, Badri AMURTHUR, Yatheendhar D. MANICKA, Scott T. MAZAR, Matt MERKERT, Brett A. LANDRUM
  • Publication number: 20150005589
    Abstract: An adherent device to monitor a patient for an extended period comprises a breathable tape. The breathable tape comprises a porous material with an adhesive coating to adhere the breathable tape to a skin of the patient. At least one electrode is affixed to the breathable tape and capable of electrically coupling to a skin of the patient. A printed circuit board is connected to the breathable tape to support the printed circuit board with the breathable tape when the tape is adhered to the patient. Electronic components electrically are connected to the printed circuit board and coupled to the at least one electrode to measure physiologic signals of the patient. A breathable cover and/or an electronics housing is disposed over the circuit board and electronic components and connected to at least one of the electronics components, the printed circuit board or the breathable tape.
    Type: Application
    Filed: July 2, 2014
    Publication date: January 1, 2015
    Inventors: Mark J. BLY, Badri AMURTHUR, Kristofer J. JAMES, Imad LIBBUS, Yahteendhar D. MANICKA, Scott T. MAZAR, Jerry S. WANG
  • Publication number: 20150005590
    Abstract: Systems and methods of detecting an impending cardiac decompensation of a patient measure at least two of an electrocardiogram signal of the patient, a hydration signal of the patient, a respiration signal of the patient or an activity signal of the patient. The at least two of the electrocardiogram signal, the hydration signal, the respiration signal or the activity signal are combined with an algorithm to detect the impending cardiac decompensation.
    Type: Application
    Filed: July 8, 2014
    Publication date: January 1, 2015
    Inventors: Imad LIBBUS, Mark J. BLY, Kristofer J. JAMES, Scott T. MAZAR, Jerry S. WANG
  • Patent number: 8903484
    Abstract: A device to measure tissue impedance comprises drive circuitry coupled to calibration circuitry, such that a calibration signal from the calibration circuitry corresponds to the current delivered through the tissue. Measurement circuitry can be coupled to measurement electrodes and the calibration circuitry, such that the tissue impedance can be determined in response to the measured calibration signal from the calibration circuitry and the measured tissue impedance signal from the measurement electrodes. Processor circuitry comprising a tangible medium can be configured to determine a complex tissue impedance in response to the calibration signal and the tissue impedance signal. The processor can be configured to select a frequency for the drive current, and the amount of drive current at increased frequencies may exceed a safety threshold for the drive current at lower frequencies.
    Type: Grant
    Filed: March 26, 2013
    Date of Patent: December 2, 2014
    Assignee: Corventis, Inc.
    Inventor: Scott T. Mazar
  • Patent number: 8897868
    Abstract: Methods and devices for monitoring and/or treating patients comprise a switch to automatically start-up the device when the device contacts tissue. By automatically starting up the device, the device may be installed without the clinician and/or user turning on the device, such that the device can be easy to use. In many embodiments, the device comprises startup circuitry with very low current and/or power consumption, for example less than 100 pA. The startup circuitry can detect tissue contact and turn on circuitry that is used to monitor or treat the patient.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: November 25, 2014
    Assignee: Medtronic, Inc.
    Inventors: Scott T. Mazar, Mark J. Bly, Arthur Lai
  • Publication number: 20140330091
    Abstract: Systems and methods of detecting an impending cardiac decompensation of a patient measure an electrocardiogram signal of the patient. An incidence of cardiac arrhythmias is determined from the electrocardiogram signal. A risk of impending decompensation is determined in response to the incidence of cardiac arrhythmias. In many embodiments, the impending decompensation can be detected early enough to avoid, or at least delay, the impending decompensation, such that patient trauma and/or expensive ICU care can be avoided. Although embodiments make specific reference to monitoring electrocardiogram and other physiological signals with an adherent patch, the system methods and devices are applicable to many applications in which physiological monitoring is used, for example wireless physiological monitoring with implanted sensors for extended periods.
    Type: Application
    Filed: May 6, 2014
    Publication date: November 6, 2014
    Applicant: Corventis, Inc.
    Inventors: Imad Libbus, Yatheendhar D. Manicka, Badri Amurthur, Scott T. Mazar
  • Publication number: 20140330136
    Abstract: An adherent device to monitor a patient comprises an adhesive patch to adhere to a skin of the patient, and at least four electrodes connected to the patch and capable of electrically coupling to the patient. The adherent device further includes impedance circuitry coupled to the at least four electrodes to measure a hydration signal of the patient and electrocardiogram circuitry coupled to at least two of the at least four electrodes to measure an electrocardiogram signal of the patient.
    Type: Application
    Filed: July 2, 2014
    Publication date: November 6, 2014
    Inventors: Yatheendhar D. MANICKA, Badri AMURTHUR, Mark J. BLY, Kristofer J. JAMES, Imad LIBBUS, Scott T. MAZAR, Jerry S. WANG
  • Patent number: 8852099
    Abstract: One embodiment of the present invention relates to a system for deriving physiologic measurement values that are relative to ambient conditions. In one embodiment, the system comprises an implantable medical device (“IMD”), an external computing device, and a backend computing system. The IMD determines a physiologic parameter value within a patient's body, and communicates the physiologic parameter value outside the patient's body, for example, to the external computing device. Further, the external computing device receives the physiologic parameter from the IMD and communicates it to the backend computing system. The backend computing system receives the physiologic parameter value and obtains an ambient condition value outside the body.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: October 7, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jeffrey A. Von Arx, Scott T. Mazar, Abhi Chavan
  • Patent number: 8823490
    Abstract: An adherent patient device is configured to adhere to the skin of the patient and measure electrocardiogram data, impedance data, accelerometer data, blood oxygen data and temperature data. The adherent device can communicate wirelessly with gateways and a local processor system, such that the patient can wander about the hospital and update the monitoring station with the patient data when the patient is ambulatory. The local processor system can be configured to customize alerts for the patient, for example to notify automatically a specialist in response to a special condition of the patient. The adherent device may comprise a unique adherent device identifier such that the customized alert can be sent based on the unique device identifier. Each of the gateways can be carried and may comprise a unique gateway identifier, such that the unique device identifier and the unique gateway identifier can be used to locate the ambulatory patient.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: September 2, 2014
    Assignee: Corventis, Inc.
    Inventors: Imad Libbus, Badri Amurthur, Yatheendhar D. Manicka, Scott T. Mazar, Matt Merkert, Brett A. Landrum
  • Patent number: 8818481
    Abstract: An adherent device to monitor a patient for an extended period comprises a breathable tape. The breathable tape comprises a porous material with an adhesive coating to adhere the breathable tape to a skin of the patient. At least one electrode is affixed to the breathable tape and capable of electrically coupling to a skin of the patient. A printed circuit board is connected to the breathable tape to support the printed circuit board with the breathable tape when the tape is adhered to the patient. Electronic components electrically are connected to the printed circuit board and coupled to the at least one electrode to measure physiologic signals of the patient. A breathable cover and/or an electronics housing is disposed over the circuit board and electronic components and connected to at least one of the electronics components, the printed circuit board or the breathable tape.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: August 26, 2014
    Assignee: Corventis, Inc.
    Inventors: Mark J. Bly, Badri Amurthur, Kristofer J. James, Imad Libbus, Yatheendhar D. Manicka, Scott T. Mazar, Jerry S. Wang
  • Patent number: 8795174
    Abstract: An adherent device to monitor a patient comprises an adhesive patch to adhere to a skin of the patient. At least four electrodes are connected to the patch and capable of electrically coupling to the patient. Impedance circuitry is coupled to the at least four electrodes to measure a hydration signal of the patient. Electrocardiogram circuitry is coupled to at least two of the at least four electrodes to measure an electrocardiogram signal of the patient. An accelerometer can be mechanically coupled to the adhesive patch to generate a signal in response to at least one of an activity or a position of the patient.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: August 5, 2014
    Assignee: Corventis, Inc.
    Inventors: Yatheendhar D. Manicka, Badri Amurthur, Mark J. Bly, Kristofer J. James, Imad Libbus, Scott T. Mazar, Jerry S. Wang
  • Patent number: 8791815
    Abstract: A system for relaying data to a repository from a medical device is disclosed. A receiver is configured to receive data from a medical device, where the data can be an indication of a problem with the medical device. A memory is configured to maintain the data once it has been received. A transmission device is configured to send the data to a data repository over a communication medium. A detector is configured to detect conditions of the communication medium that could affect data exchange and send the data based at least in part on the conditions. A processor is configured to send at least a portion of the data based at least in part on a degree of urgency.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: July 29, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Scott T. Mazar, Yatheendhar D. Manicka
  • Patent number: 8790257
    Abstract: Systems and methods of detecting an impending cardiac decompensation of a patient measure at least two of an electrocardiogram signal of the patient, a hydration signal of the patient, a respiration signal of the patient or an activity signal of the patient. The at least two of the electrocardiogram signal, the hydration signal, the respiration signal or the activity signal are combined with an algorithm to detect the impending cardiac decompensation.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: July 29, 2014
    Assignee: Corventis, Inc.
    Inventors: Imad Libbus, Mark J. Bly, Kristofer J. James, Scott T. Mazar, Jerry S. Wang