Patents by Inventor Scott Weil

Scott Weil has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10029934
    Abstract: A glass furnace includes a furnace chamber including a side wall and a bottom wall and containing a pool of glass melt having a melt level. A batch feed hopper is adjacent to the side wall of the furnace chamber to supply batch material under gravity to a bottom of the hopper. A feed opening is in the side wall of the furnace chamber and feeds batch material from the bottom of the hopper to the pool of glass melt below the melt level. A conveyor is proximate the bottom wall of the hopper and feeds the batch material from the bottom of the hopper through the feed opening and into the furnace chamber.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: July 24, 2018
    Assignee: Owens-Brockway Glass Container Inc.
    Inventors: Zhongming Wang, Scott Weil, Tilak Gullinkala, Udaya Vempati, Shivakumar S. Kadur
  • Publication number: 20180162766
    Abstract: A glass precursor gel and a method of making a glass product from the glass precursor gel are disclosed. The glass precursor gel includes a bulk amorphous oxide-based matrix that is homogeneously chemically mixed and includes 30 mol % to 90 wt.% silica and at least one of the following: (A) 0.1 mol % to 25 mol % of one or more alkali oxides in sum total, (B) 0.1 mol % to 25 mol % of one or more alkaline earth oxides in sum total, (C) 1 mol % to 20 mol % boric oxide, (D) 5 mol % to 80 mol % lead oxide, or (E) 0.1 mol % to 10 mol % aluminum oxide. A method of making a glass product from the glass precursor gel involves obtaining the glass precursor gel, melting the glass precursor gel into molten glass, and forming the molten glass into a glass product.
    Type: Application
    Filed: February 8, 2018
    Publication date: June 14, 2018
    Inventors: Scott P. Cooper, Michael P. Remington, Scott Weil, Tilak Gullinkala, Sutapa Bhaduri
  • Patent number: 9890072
    Abstract: A glass precursor gel and a method of making a glass product from the glass precursor gel are disclosed. The glass precursor gel includes a bulk amorphous oxide-based matrix that is homogeneously chemically mixed and includes 30 mol % to 90 wt. % silica and at least one of the following: (A) 0.1 mol % to 25 mol % of one or more alkali oxides in sum total, (B) 0.1 mol % to 25 mol % of one or more alkaline earth oxides in sum total, (C) 1 mol % to 20 mol % boric oxide, (D) 5 mol % to 80 mol % lead oxide, or (E) 0.1 mol % to 10 mol % aluminum oxide. A method of making a glass product from the glass precursor gel involves obtaining the glass precursor gel, melting the glass precursor gel into molten glass, and forming the molten glass into a glass product.
    Type: Grant
    Filed: April 1, 2015
    Date of Patent: February 13, 2018
    Assignee: Owens-Brockway Glass Container Inc.
    Inventors: Scott P. Cooper, Michael P Remington, Scott Weil, Tilak Gullinkala, Sutapa Bhaduri
  • Publication number: 20180037975
    Abstract: Nanocrystalline metal powders comprising tungsten, molybdenum, rhenium or niobium can be synthesized using a combustion reaction. Methods for synthesizing the nanocrystalline metal powders are characterized by forming a combustion synthesis solution by dissolving in water an oxidizer, a fuel, and a base-soluble, ammonium precursor of tungsten, molybdenum, rhenium, or niobium in amounts that yield a soichiometric burn when combusted. The combustion synthesis solution is then heated to a temperature sufficient to substantially remove water and to initiate a self-sustaining combustion reaction. The resulting powder can be subsequently reduced to metal form by heating in a reducing gas environment.
    Type: Application
    Filed: October 17, 2017
    Publication date: February 8, 2018
    Inventors: John G. Frye, Kenneth Scott Weil, Curt A. Lavender, Jin Yong Kim
  • Publication number: 20180029916
    Abstract: A glass furnace includes a furnace chamber for containing glass melt and a conveyor for receiving glass batch material and feeding the glass batch material to the furnace chamber. A dam wall is disposed with respect to the conveyor such that batch material from the conveyor must flow upward over the dam wall before entering the furnace chamber. The top of the dam wall may be below the level of the melt pool in the furnace chamber.
    Type: Application
    Filed: October 12, 2017
    Publication date: February 1, 2018
    Inventors: Zhongming Wang, Scott Weil, Tilak Gullinkala, Udaya Vempati, Shivakumar S. Kadur
  • Publication number: 20180029917
    Abstract: A glass furnace includes a furnace chamber including a side wall and a bottom wall and containing a pool of glass melt having a melt level. A batch feed hopper is adjacent to the side wall of the furnace chamber to supply batch material under gravity to a bottom of the hopper. A feed opening is in the side wall of the furnace chamber and feeds batch material from the bottom of the hopper to the pool of glass melt below the melt level. A conveyor is proximate the bottom wall of the hopper and feeds the batch material from the bottom of the hopper through the feed opening and into the furnace chamber.
    Type: Application
    Filed: October 13, 2017
    Publication date: February 1, 2018
    Inventors: Zhongming Wang, Scott Weil, Tilak Gullinkala, Udaya Vempati, Shivakumar S. Kadur
  • Patent number: 9822027
    Abstract: A glass furnace includes a furnace chamber for containing glass melt and a screw conveyor for receiving glass batch material and feeding the glass batch material to the furnace chamber. A dam wall is disposed with respect to the screw conveyor such that batch material from the screw conveyor must flow upward over the dam wall before entering the furnace chamber. The top of the dam wall may be below the level of the melt pool in the furnace chamber.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: November 21, 2017
    Assignee: Owens-Brockway Glass Container Inc.
    Inventors: Zhongming Wang, Scott Weil, Tilak Gullinkala, Udaya Vempati, Shivakumar S. Kadur
  • Patent number: 9802834
    Abstract: Nanocrystalline metal powders comprising tungsten, molybdenum, rhenium and/or niobium can be synthesized using a combustion reaction. Methods for synthesizing the nanocrystalline metal powders are characterized by forming a combustion synthesis solution by dissolving in water an oxidizer, a fuel, and a base-soluble, ammonium precursor of tungsten, molybdenum, rhenium, or niobium in amounts that yield a stoichiometric burn when combusted. The combustion synthesis solution is then heated to a temperature sufficient to substantially remove water and to initiate a self-sustaining combustion reaction. The resulting powder can be subsequently reduced to metal form by heating in a reducing gas environment.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: October 31, 2017
    Assignee: Battelle Memorial Institute
    Inventors: John G. Frye, Kenneth Scott Weil, Curt A. Lavender, Jin Yong Kim
  • Patent number: 9481923
    Abstract: Methods of aluminizing the surface of a metal substrate. The methods of the present invention do not require establishment of a vacuum or a reducing atmosphere, as is typically necessary. Accordingly, aluminization can occur in the presence of oxygen, which greatly simplifies and reduces processing costs by allowing deposition of the aluminum coating to be performed, for example, in air. Embodiments of the present invention can be characterized by applying a slurry that includes a binder and powder granules containing aluminum to the metal substrate surface. Then, in a combined step, a portion of the aluminum is diffused into the substrate and a portion of the aluminum is oxidized by heating the slurry to a temperature greater than the melting point of the aluminum in an oxygen-containing atmosphere.
    Type: Grant
    Filed: May 21, 2009
    Date of Patent: November 1, 2016
    Assignee: Battelle Memorial Institute
    Inventors: Jung-Pyung Choi, Kenneth Scott Weil
  • Publication number: 20160312358
    Abstract: Reactive coating processes are provided that can include providing a coating material, reacting the coating material to form a shell about the coating material, contacting the shelled coating material with a substrate to be coated, depositing the coating material from within the shelled coating material on the substrate, and removing the shells from the substrate. Coating materials may be deposited upon a substrate to be coated and reacted to form a shell about the coating material. The coating materials can be particles and a shell can be formed about each of the individual particles.
    Type: Application
    Filed: July 1, 2016
    Publication date: October 27, 2016
    Applicant: Battelle Memorial Institute
    Inventors: Jung-Pyung Choi, Jeffrey W. Stevenson, Kenneth Scott Weil, Yeong-Shyung Matt Chou, Jens T. Darsell, Vineet V. Joshi
  • Publication number: 20160289114
    Abstract: A glass precursor gel and a method of making a glass product from the glass precursor gel are disclosed. The glass precursor gel includes a bulk amorphous oxide-based matrix that is homogeneously chemically mixed and includes 30 mol % to 90 wt. % silica and at least one of the following: (A) 0.1 mol % to 25 mol % of one or more alkali oxides in sum total, (B) 0.1 mol % to 25 mol % of one or more alkaline earth oxides in sum total, (C) 1 mol % to 20 mol % boric oxide, (D) 5 mol % to 80 mol % lead oxide, or (E) 0.1 mol % to 10 mol % aluminum oxide. A method of making a glass product from the glass precursor gel involves obtaining the glass precursor gel, melting the glass precursor gel into molten glass, and forming the molten glass into a glass product.
    Type: Application
    Filed: April 1, 2015
    Publication date: October 6, 2016
    Inventors: Scott P. Cooper, Michael P. Remington, Scott Weil, Tilak Gullinkala, Sutapa Bhaduri
  • Patent number: 9421118
    Abstract: A digital strapping system comprising an alternatively configurable hallux strap system for positioning and exercising a hallux of a foot, and/or an alternatively configurable osteotomy strap system for positioning and exercising a second and/or third digit of a foot.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: August 23, 2016
    Assignee: Royal Patents, LLC
    Inventors: Dean F. Cropper, Lowell Scott Weil, Sr., Lowell Scott Weil, Jr.
  • Patent number: 9283637
    Abstract: Tools for friction stir welding can be made with fewer process steps, lower cost techniques, and/or lower cost ingredients than other state-of-the-art processes by utilizing improved compositions and processes of fabrication. Furthermore, the tools resulting from the improved compositions and processes of fabrication can exhibit better distribution and homogeneity of chemical constituents, greater strength, and/or increased durability. In one example, a friction stir weld tool includes tungsten and rhenium and is characterized by carbide and oxide dispersoids, by carbide particulates, and by grains that comprise a solid solution of the tungsten and rhenium. The grains do not exceed 10 micrometers in diameter.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: March 15, 2016
    Assignee: Battelle Memorial Institute
    Inventors: Glenn J. Grant, John G. Frye, Jin Yong Kim, Curt A. Lavender, Kenneth Scott Weil
  • Publication number: 20150307382
    Abstract: A glass furnace includes a furnace chamber for containing glass melt and a screw conveyor for receiving glass batch material and feeding the glass batch material to the furnace chamber. A dam wall is disposed with respect to the screw conveyor such that batch material from the screw conveyor must flow upward over the dam wall before entering the furnace chamber. The top of the dam wall may be below the level of the melt pool in the furnace chamber.
    Type: Application
    Filed: April 25, 2014
    Publication date: October 29, 2015
    Applicant: Owens-Brockway Glass Container Inc.
    Inventors: Zhongming Wang, Scott Weil, Tilak Gullinkala, Udaya Vempati, Shivakumar S. Kadur
  • Patent number: 8424747
    Abstract: A method for joining two ceramic parts, or a ceramic part and a metal part, and the joint formed thereby. The method provides two or more parts, a braze consisting of a mixture of copper oxide and silver, a diffusion barrier, and then heats the braze for a time and at a temperature sufficient to form the braze into a bond holding the two or more parts together. The diffusion barrier is an oxidizable metal that forms either a homogeneous component of the braze, a heterogeneous component of the braze, a separate layer bordering the braze, or combinations thereof. The oxidizable metal is selected from the group Al, Mg, Cr, Si, Ni, Co, Mn, Ti, Zr, Hf, Pt, Pd, Au, lanthanides, and combinations thereof.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: April 23, 2013
    Assignee: Battelle Memorial Institute
    Inventors: Kenneth Scott Weil, John S. Hardy, Jin Yong Kim, Jung-Pyung Choi
  • Patent number: 8293426
    Abstract: Solid-oxide fuel cell (SOFC) stack assembly designs are consistently investigated to develop an assembly that provides optimal performance, and durability, within desired cost parameters. A new design includes a repeat unit having a SOFC cassette and being characterized by a three-component construct. The three components include an oxidation-resistant, metal window frame hermetically joined to an electrolyte layer of a multi-layer, anode-supported ceramic cell and a pre-cassette including a separator plate having a plurality of vias that provide electrical contact between an anode-side collector within the pre-cassette and a cathode-side current collector of an adjacent cell. The third component is a cathode-side seal, which includes a standoff that supports a cathode channel spacing between each of the cassettes in a stack. Cassettes are formed by joining the pre-cassette and the window frame.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: October 23, 2012
    Assignee: Battelle Memorial Institute
    Inventors: K. Scott Weil, Kerry D. Meinhardt, Vincent L. Sprenkle
  • Publication number: 20120232453
    Abstract: A digital strapping system comprising an alternatively configurable hallux strap system for positioning and exercising a hallux of a foot, and/or an alternatively configurable osteotomy strap system for positioning and exercising a second and/or third digit of a foot.
    Type: Application
    Filed: March 9, 2011
    Publication date: September 13, 2012
    Inventors: Dean Cropper, Lowell Scott Weil, SR., Lowell Scott Weil, JR.
  • Publication number: 20120215320
    Abstract: An implant for metatarsal hemiarthroplasty according to embodiments of the present invention includes a resurfacing body configured to at least partially resurface distal and dorsal surfaces of an articular head of a metatarsus, the resurfacing body including a first side and a second side, the first side configured to articulate against a phalange associated with the metatarsus, the first side including a convex surface formed of ceramic, the second side configured to be fixed to the metatarsus, the second side including a concave surface from which protrude at least two immobilization elements, the at least two immobilization elements configured to interface with the articular head.
    Type: Application
    Filed: December 21, 2011
    Publication date: August 23, 2012
    Inventors: Chris HARBER, Corey WILSON-WIRTH, Michel HASSLER, David VANCELETTE, Nelson OI, Jonathan DELAND, Lowell Scott WEIL, SR., Albert H. BURSTEIN
  • Patent number: 8048587
    Abstract: An electrically-conductive mesh spacer incorporated into the hydrogen and air gas flow spaces between each anode and cathode and its adjacent interconnect in a fuel cell stack. The mesh is formed of metal strands and is formed into a predetermined three-dimensional pattern to make contact at a plurality of points on the surfaces of the electrode and the interconnect element. The formed mesh spacer is secured as by brazing to the interconnect element at a plurality of locations to form an interconnect, which preserves the pattern during assembly of a fuel cell stack. The height of the formed pattern is greater than the height of a gas flow space after fuel cell assembly, such that the mesh spacer is slightly compressed during assembly of a fuel cell stack. Because the metal mesh is both compliant and resilient, the compressed spacer is continuously urged into mechanical and electrical contact with its electrode over all temperatures and pressures to which the fuel cell assembly may be subjected during use.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: November 1, 2011
    Assignees: Delphi Technologies, Inc., Batelle Memorial Institute
    Inventors: Haskell Simpkins, Karl J. Haltiner, Jr., Subhasish Mukerjee, Kenneth Scott Weil, Dean Paxton
  • Publication number: 20110194970
    Abstract: Nanocrystalline metal powders comprising tungsten, molybdenum, rhenium or niobium can be synthesized using a combustion reaction. Methods for synthesizing the nanocrystalline metal powders are characterized by forming a combustion synthesis solution by dissolving in water an oxidizer, a fuel, and a base-soluble, ammonium precursor of tungsten, molybdenum, rhenium, or niobium in amounts that yield a soichiometric burn when combusted. The combustion synthesis solution is then heated to a temperature sufficient to substantially remove water and to initiate a self-sustaining combustion reaction. The resulting powder can be subsequently reduced to metal form by heating in a reducing gas environment.
    Type: Application
    Filed: February 5, 2010
    Publication date: August 11, 2011
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: John G. Frye, Kenneth Scott Weil, Curt A. Lavender, Jin Yong Kim