Patents by Inventor Seiji Shimabukuro

Seiji Shimabukuro has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11942429
    Abstract: A vertical repetition of multiple instances of a unit layer stack is formed over a substrate. The unit layer stack includes an insulating layer and a sacrificial material layer. Lateral recesses are formed by removing the sacrificial material layers selective to the insulating layers. Each lateral recess is sequentially fill with at least one conductive fill material and an insulating fill material, and vertically-extending portions of the at least one conductive fill material are removed such that a vertical layer stack including a first-type electrically conductive layer, a seamed insulating layer, and a second-type electrically conductive layer are formed in each lateral recess. Memory opening fill structures including a respective vertical stack of memory elements is formed through the insulating layers and the layer stacks. Memory openings, contact via cavities, or backside trenches may be used as access points for removing the sacrificial material layers.
    Type: Grant
    Filed: June 18, 2021
    Date of Patent: March 26, 2024
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Tatsuya Hinoue, Naoki Takeguchi, Masanori Tsutsumi, Seiji Shimabukuro
  • Publication number: 20240099014
    Abstract: At least one vertically alternating sequence of continuous insulating layers and continuous sacrificial material layers is formed over a substrate. Rows of backside support pillar structures are formed through the at least one vertically alternating sequence. Memory stack structures are formed through the at least one vertically alternating sequence. A two-dimensional array of discrete backside trenches is formed through the at least one vertically alternating sequence. Contiguous combinations of a subset of the backside trenches and a subset of the backside support pillar structures divide the at least one vertically alternating sequence into alternating stacks of insulating layers and sacrificial material layers. The sacrificial material layers are replaced with electrically conductive layers while the backside support pillar structures provide structural support to the insulating layers.
    Type: Application
    Filed: November 30, 2023
    Publication date: March 21, 2024
    Inventors: Shunsuke TAKUMA, Yuji TOTOKI, Seiji SHIMABUKURO, Tatsuya HINOUE, Kengo KAJIWARA, Akihiro TOBIOKA
  • Patent number: 11844222
    Abstract: At least one vertically alternating sequence of continuous insulating layers and continuous sacrificial material layers is formed over a substrate. Rows of backside support pillar structures are formed through the at least one vertically alternating sequence. Memory stack structures are formed through the at least one vertically alternating sequence. A two-dimensional array of discrete backside trenches is formed through the at least one vertically alternating sequence. Contiguous combinations of a subset of the backside trenches and a subset of the backside support pillar structures divide the at least one vertically alternating sequence into alternating stacks of insulating layers and sacrificial material layers. The sacrificial material layers are replaced with electrically conductive layers while the backside support pillar structures provide structural support to the insulating layers.
    Type: Grant
    Filed: January 12, 2021
    Date of Patent: December 12, 2023
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Shunsuke Takuma, Yuji Totoki, Seiji Shimabukuro, Tatsuya Hinoue, Kengo Kajiwara, Akihiro Tobioka
  • Patent number: 11702750
    Abstract: A patterned backside stress compensation film having different stress in different sectors is formed on a backside of a substrate to reduce combination warpage of the substrate. The film can be formed by employing a radio frequency electrode assembly including plurality of conductive plates that are biased with different RF power and cause local variations in the plasma employed to deposit the backside film. Alternatively, the film may be deposited with uniform stress, and some of its sectors are irradiated with ultraviolet radiation to change the stress of these irradiated sectors. Yet alternatively, multiple backside deposition processes may be sequentially employed to deposit different backside films to provide a composite backside film having different stresses in different sectors.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: July 18, 2023
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Seiji Shimabukuro, Makoto Tsutsue
  • Patent number: 11637118
    Abstract: A alternating stack of insulating layers and sacrificial material layers is formed over a substrate. An array of memory opening fill structures and an array of support pillar structures are formed through the alternating stack. Backside trenches are formed through the alternating stack by performing an anisotropic etch process. The anisotropic etch process etches peripheral portions of a subset of the array of support pillar structures. The sacrificial material layers are replaced with electrically conductive layer by forming backside recesses while the support pillar structures provide mechanical support to the insulating layers.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: April 25, 2023
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Shunsuke Takuma, Seiji Shimabukuro, Kengo Kajiwara
  • Publication number: 20220406379
    Abstract: A vertical repetition of multiple instances of a unit layer stack is formed over a substrate. The unit layer stack includes an insulating layer and a sacrificial material layer. Lateral recesses are formed by removing the sacrificial material layers selective to the insulating layers. Each lateral recess is sequentially fill with at least one conductive fill material and an insulating fill material, and vertically-extending portions of the at least one conductive fill material are removed such that a vertical layer stack including a first-type electrically conductive layer, a seamed insulating layer, and a second-type electrically conductive layer are formed in each lateral recess. Memory opening fill structures including a respective vertical stack of memory elements is formed through the insulating layers and the layer stacks. Access points for providing an etchant for removing the sacrificial material layers may be provided by memory openings, contact via cavities or backside trenches.
    Type: Application
    Filed: June 18, 2021
    Publication date: December 22, 2022
    Inventors: Naoki TAKEGUCHI, Masanori TSUTSUMI, Seiji SHIMABUKURO, Tatsuya HINOUE
  • Publication number: 20220406793
    Abstract: A vertical repetition of multiple instances of a unit layer stack is formed over a substrate. The unit layer stack includes an insulating layer and a sacrificial material layer. Lateral recesses are formed by removing the sacrificial material layers selective to the insulating layers. Each lateral recess is sequentially fill with at least one conductive fill material and an insulating fill material, and vertically-extending portions of the at least one conductive fill material are removed such that a vertical layer stack including a first-type electrically conductive layer, a seamed insulating layer, and a second-type electrically conductive layer are formed in each lateral recess. Memory opening fill structures including a respective vertical stack of memory elements is formed through the insulating layers and the layer stacks. Access points for providing an etchant for removing the sacrificial material layers may be provided by memory openings, contact via cavities or backside trenches.
    Type: Application
    Filed: June 18, 2021
    Publication date: December 22, 2022
    Inventors: Naoki TAKEGUCHI, Masanori TSUTSUMI, Seiji SHIMABUKURO, Tatsuya HINOUE
  • Publication number: 20220406720
    Abstract: A vertical repetition of multiple instances of a unit layer stack is formed over a substrate. The unit layer stack includes an insulating layer and a sacrificial material layer. Lateral recesses are formed by removing the sacrificial material layers selective to the insulating layers. Each lateral recess is sequentially fill with at least one conductive fill material and an insulating fill material, and vertically-extending portions of the at least one conductive fill material are removed such that a vertical layer stack including a first-type electrically conductive layer, a seamed insulating layer, and a second-type electrically conductive layer are formed in each lateral recess. Memory opening fill structures including a respective vertical stack of memory elements is formed through the insulating layers and the layer stacks. Access points for providing an etchant for removing the sacrificial material layers may be provided by memory openings, contact via cavities or backside trenches.
    Type: Application
    Filed: June 18, 2021
    Publication date: December 22, 2022
    Inventors: Tatsuya HINOUE, Naoki TAKEGUCHI, Masanori TSUTSUMI, Seiji SHIMABUKURO
  • Patent number: 11532570
    Abstract: A three-dimensional memory device includes a first word-line region including a first alternating stack of first word lines and continuous insulating layers, first memory stack structures vertically extending through the first alternating stack, a second word-line region comprising a second alternating stack of second word lines and the continuous insulating layers, second memory stack structures vertically extending through the second alternating stack, plural dielectric separator structures located between the first word-line region and the second word-line region, and at least one bridge region located between the plural dielectric separator structures and between the between the first word-line region and the second word-line region. The continuous insulating layers extend through the at least one bridge region between the first alternating stack in the first word-line region and the second alternating stack in the second word-line region.
    Type: Grant
    Filed: February 11, 2021
    Date of Patent: December 20, 2022
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Genta Mizuno, Kenzo Iizuka, Satoshi Shimizu, Keisuke Izumi, Tatsuya Hinoue, Yujin Terasawa, Seiji Shimabukuro, Ryousuke Itou, Yanli Zhang, Johann Alsmeier, Yusuke Yoshida
  • Publication number: 20220375958
    Abstract: A three-dimensional memory device includes an alternating stack of insulating layers and electrically conductive layers located over a substrate, memory openings vertically extending through a first region of the alternating stack, memory opening fill structures located in the memory openings, and support pillar structures vertically extending through a second region of the alternating stack. Each of the support pillar structures includes a central columnar structure and a set of fins laterally protruding from the central columnar structure at levels of a subset of the electrically conductive layers.
    Type: Application
    Filed: May 24, 2021
    Publication date: November 24, 2022
    Inventors: Seiji SHIMABUKURO, Takashi YAMAHA
  • Patent number: 11473199
    Abstract: A patterned backside stress compensation film having different stress in different sectors is formed on a backside of a substrate to reduce combination warpage of the substrate. The film can be formed by employing a radio frequency electrode assembly including plurality of conductive plates that are biased with different RF power and cause local variations in the plasma employed to deposit the backside film. Alternatively, the film may be deposited with uniform stress, and some of its sectors are irradiated with ultraviolet radiation to change the stress of these irradiated sectors. Yet alternatively, multiple backside deposition processes may be sequentially employed to deposit different backside films to provide a composite backside film having different stresses in different sectors.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: October 18, 2022
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Seiji Shimabukuro, Makoto Tsutsue
  • Publication number: 20220254733
    Abstract: A three-dimensional memory device includes a first word-line region including a first alternating stack of first word lines and continuous insulating layers, first memory stack structures vertically extending through the first alternating stack, a second word-line region comprising a second alternating stack of second word lines and the continuous insulating layers, second memory stack structures vertically extending through the second alternating stack, plural dielectric separator structures located between the first word-line region and the second word-line region, and at least one bridge region located between the plural dielectric separator structures and between the between the first word-line region and the second word-line region. The continuous insulating layers extend through the at least one bridge region between the first alternating stack in the first word-line region and the second alternating stack in the second word-line region.
    Type: Application
    Filed: February 11, 2021
    Publication date: August 11, 2022
    Inventors: Genta MIZUNO, Kenzo IIZUKA, Satoshi SHIMIZU, Keisuke IZUMI, Tatsuya HINOUE, Yujin TERASAWA, Seiji SHIMABUKURO, Ryousuke ITOU, Yanli ZHANG, Johann ALSMEIER, Yusuke YOSHIDA
  • Publication number: 20220223614
    Abstract: At least one vertically alternating sequence of continuous insulating layers and continuous sacrificial material layers is formed over a substrate. Rows of backside support pillar structures are formed through the at least one vertically alternating sequence. Memory stack structures are formed through the at least one vertically alternating sequence. A two-dimensional array of discrete backside trenches is formed through the at least one vertically alternating sequence. Contiguous combinations of a subset of the backside trenches and a subset of the backside support pillar structures divide the at least one vertically alternating sequence into alternating stacks of insulating layers and sacrificial material layers. The sacrificial material layers are replaced with electrically conductive layers while the backside support pillar structures provide structural support to the insulating layers.
    Type: Application
    Filed: January 12, 2021
    Publication date: July 14, 2022
    Inventors: Shunsuke TAKUMA, Yuji TOTOKI, Seiji SHIMABUKURO, Tatsuya HINOUE, Kengo KAJIWARA, Akihiro TOBIOKA
  • Publication number: 20210388500
    Abstract: A patterned backside stress compensation film having different stress in different sectors is formed on a backside of a substrate to reduce combination warpage of the substrate. The film can be formed by employing a radio frequency electrode assembly including plurality of conductive plates that are biased with different RF power and cause local variations in the plasma employed to deposit the backside film. Alternatively, the film may be deposited with uniform stress, and some of its sectors are irradiated with ultraviolet radiation to change the stress of these irradiated sectors. Yet alternatively, multiple backside deposition processes may be sequentially employed to deposit different backside films to provide a composite backside film having different stresses in different sectors.
    Type: Application
    Filed: June 10, 2020
    Publication date: December 16, 2021
    Inventors: Seiji SHIMABUKURO, Makoto TSUTSUE
  • Publication number: 20210388502
    Abstract: A patterned backside stress compensation film having different stress in different sectors is formed on a backside of a substrate to reduce combination warpage of the substrate. The film can be formed by employing a radio frequency electrode assembly including plurality of conductive plates that are biased with different RF power and cause local variations in the plasma employed to deposit the backside film. Alternatively, the film may be deposited with uniform stress, and some of its sectors are irradiated with ultraviolet radiation to change the stress of these irradiated sectors. Yet alternatively, multiple backside deposition processes may be sequentially employed to deposit different backside films to provide a composite backside film having different stresses in different sectors.
    Type: Application
    Filed: June 10, 2020
    Publication date: December 16, 2021
    Inventors: Seiji SHIMABUKURO, Makoto TSUTSUE
  • Publication number: 20210358936
    Abstract: A alternating stack of insulating layers and sacrificial material layers is formed over a substrate. An array of memory opening fill structures and an array of support pillar structures are formed through the alternating stack. Backside trenches are formed through the alternating stack by performing an anisotropic etch process. The anisotropic etch process etches peripheral portions of a subset of the array of support pillar structures. The sacrificial material layers are replaced with electrically conductive layer by forming backside recesses while the support pillar structures provide mechanical support to the insulating layers.
    Type: Application
    Filed: September 29, 2020
    Publication date: November 18, 2021
    Inventors: Shunsuke TAKUMA, Seiji SHIMABUKURO, Kengo KAJIWARA
  • Patent number: 10818545
    Abstract: A first metal interconnect structure embedded in a first dielectric material layer includes a first metallic nitride liner containing a first conductive metal nitride and a first metallic fill material portion. A second metal interconnect structure embedded in a second dielectric material layer overlies the first dielectric material layer. The second metal interconnect structure includes a pillar portion having a straight sidewall and a foot portion adjoined to a bottom periphery of the pillar portion and laterally protruding from the bottom periphery of the pillar portion. The foot portion can be formed by oxidizing a top surface of the first metallic fill material portion, removing the oxidized portion after formation of a cavity through the second dielectric material layer, and depositing a second metallic nitride liner in a volume from which the oxidized portion is removed.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: October 27, 2020
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Seiji Shimabukuro, Makoto Kamijo, Tetsuya Kaneko
  • Patent number: 10546870
    Abstract: A three-dimensional NAND memory string includes an alternating stack of insulating layers and word line layers extending in a word line direction, a memory array region in the alternating stack containing memory stack structures, a group of more than two column stairs located in the alternating stack and extending in the word line direction from one side of the memory array region, and bit lines electrically contacting the vertical semiconductor channels and extending in a bit line direction which is perpendicular to the word line direction. Each column stair of the group of N column stairs has a respective step in a first vertical plane which extends in the bit line direction, and the respective steps in the first vertical plane decrease and then increase from one end column stair to another end column stair.
    Type: Grant
    Filed: April 18, 2018
    Date of Patent: January 28, 2020
    Assignee: SanDisk Technologies LLC
    Inventors: Seiji Shimabukuro, Kensuke Yamaguchi
  • Publication number: 20200006131
    Abstract: A first metal interconnect structure embedded in a first dielectric material layer includes a first metallic nitride liner containing a first conductive metal nitride and a first metallic fill material portion. A second metal interconnect structure embedded in a second dielectric material layer overlies the first dielectric material layer. The second metal interconnect structure includes a pillar portion having a straight sidewall and a foot portion adjoined to a bottom periphery of the pillar portion and laterally protruding from the bottom periphery of the pillar portion. The foot portion can be formed by oxidizing a top surface of the first metallic fill material portion, removing the oxidized portion after formation of a cavity through the second dielectric material layer, and depositing a second metallic nitride liner in a volume from which the oxidized portion is removed.
    Type: Application
    Filed: June 29, 2018
    Publication date: January 2, 2020
    Inventors: Seiji Shimabukuro, Makoto Kamijo, Tetsuya Kaneko
  • Patent number: 10468413
    Abstract: A method of forming a three-dimensional memory device includes forming memory stack structures vertically extending through an alternating stack of insulating layers and electrically conductive layers over a substrate, such that each of the memory stack structures includes a memory film and a vertical semiconductor channel laterally surrounded by the memory film. The method also includes forming a stack of a first silicon nitride layer and a second silicon nitride layer over the memory stack structures, such that the first silicon nitride layer has a higher hydrogen-to-nitrogen ratio than the second silicon nitride layer, performing an anneal process at an elevated temperature to diffuse hydrogen from the first silicon nitride layer into the memory stack structures, and removing the first and second silicon nitride layers.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: November 5, 2019
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Shunsuke Takuma, Seiji Shimabukuro, Hirotada Tobita