Patents by Inventor Selami Haydar Icli

Selami Haydar Icli has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220397225
    Abstract: A sensor interface module for an inspection robot includes a scissor lift for varied radial positioning of, and a universal sensor mount for mounting, a selected one of a plurality of different sensors. A visual inspection module for the robot includes an inspection unit for simultaneously visually inspecting a first surface facing a first direction and a spaced, second surface facing an opposing, second direction toward the first surface. The inspection unit includes a first visual sensor and a second visual sensor, each visual sensor facing in a direction different than the first and second directions. A first reflector reflects an image of the first surface to the first visual sensor, and a second reflector reflects an image of the second surface to the second visual sensor. A robot system may include the sensor interface module and the inspection unit.
    Type: Application
    Filed: August 13, 2020
    Publication date: December 15, 2022
    Inventors: Selim AKIN, Selami Haydar ICLI, Christopher Paul MARKMAN, Brian William GRAHAM, Satoshi KITANO, Salvatore SESSA, Paulo Cesar DEBENEST, Giacomo CIMARELLI
  • Publication number: 20220289323
    Abstract: A traction module for a robot system and a robot system using the traction module having, an outer frame and a rotating frame rotatably mounted within the outer frame. A drive system is operatively coupled to the rotating frame and configured to drive a traction drive component to propel the robot. An actuator is operatively connected to the rotating frame to controllably rotate the rotating frame. During a first portion of a rotating movement of the rotating frame, the drive system moves between a flat mode position relative to the outer frame and a clearance mode position in which the drive system extends outwardly from the outer frame to a greater extent than in the first position. During a second portion of the rotating movement of the rotating frame, the drive system may be positioned in a desired orientation to propel the robot.
    Type: Application
    Filed: August 14, 2020
    Publication date: September 15, 2022
    Inventors: Selim AKIN, Selami Haydar ICLI, Giacomo CIMARELLI, Paulo Cesar DEBENEST, Michele GUARNIERI, Giorgio VALSECCHI
  • Patent number: 10603802
    Abstract: This disclosure provides systems and methods for in situ gap inspection in a machine, such as a generator, an electric motor, or a turbomachine, with an end region. A robotic crawler is configured to navigate an annular gap of the machine. A visual inspection module is connected to the robotic crawler and includes an extension member for extending a camera into the end region to collect visual inspection data.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: March 31, 2020
    Assignee: General Electric Company
    Inventors: Selim Akin, Thomas James Batzinger, Airton Rosa da Silva, Jr., Selami Haydar Icli, Christopher Paul Markman, Paulo Cesar Debenest, Michele Guarnieri, Giorgio Valsecchi, Shigeo Hirose
  • Patent number: 10596713
    Abstract: This disclosure provides systems and methods for an actuated sensor module for in situ gap inspection robots. A mounting interface attaches to the sensor module to the robot system. A least one arm is operatively connected to the mounting interface and has a joint. A sensor head is operatively connected to the arm at the joint and an actuator operatively connected to the arm moves the sensor head around the second joint.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: March 24, 2020
    Assignee: General Electric Company
    Inventors: Selim Akin, Thomas James Batzinger, Airton Rosa da Silva, Jr., Selami Haydar Icli, Paulo Cesar Debenest, Michele Guarnieri, Giorgio Valsecchi, Giacomo Cimarelli, Shigeo Hirose
  • Patent number: 10434641
    Abstract: Systems and methods for in situ gap inspection in a machine, such as a generator, an electric motor, or a turbomachine are described. A robotic crawler has multidirectional traction modules, an expandable body, and sensor modules. A control system communicates with the robotic crawler to provide a control signal to navigate an inspection path within an annular gap of the machine. The inspection path includes axial and radial movements to inspect the annular gap using the sensor modules.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: October 8, 2019
    Assignee: General Electric Company
    Inventors: Selim Akin, Thomas James Batzinger, Airton Rosa da Silva, Jr., Selami Haydar Icli, Christopher Paul Markman, Paulo Cesar Debenest, Michele Guarnieri, Shigeo Hirose
  • Patent number: 10427290
    Abstract: This disclosure provides systems and methods for in situ gap inspection in a machine, such as a generator, an electric motor, or a turbomachine. A robotic crawler includes an expandable body, multidirectional traction modules, and sensor modules. The expandable body is movable between a collapsed state and an expanded state. The multidirectional traction modules are removably connected to and positioned by the expandable body and configured to engage opposed surfaces within an annular gap of the machine. The sensor modules are removably connected to and supported by the expandable body and include a plurality of sensor types to inspect the annular gap of the machine.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: October 1, 2019
    Assignee: General Electric Company
    Inventors: Selim Akin, Thomas James Batzinger, Airton Rosa da Silva, Selami Haydar Icli, Christopher Paul Markman, Paulo Cesar Debenest, Michele Guarnieri, Shigeo Hirose
  • Patent number: 10427734
    Abstract: This disclosure provides systems and components for an omnidirectional traction module for use in a robot, such as a crawler robot used in in situ gap inspection in a machine, such as a generator, an electric motor, or a turbomachine. The traction module may include an outer frame and a rotating frame rotatably mounted within the outer frame. At least one drive system may be mounted within the rotating frame. The at least one dive system may have a fixed orientation within the rotating frame. An actuator may be operatively connected to the rotating frame to controllably rotate the rotating frame to a desired orientation for robot travel.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: October 1, 2019
    Assignee: General Electric Company
    Inventors: Selim Akin, Thomas James Batzinger, Selami Haydar Icli, Christopher Paul Markman, Paulo Cesar Debenest, Michele Guarnieri, Giorgio Valsecchi, Giacomo Cimarelli, Shigeo Hirose
  • Publication number: 20190022849
    Abstract: This disclosure provides systems and methods for in situ gap inspection in a machine, such as a generator, an electric motor, or a turbomachine. A robotic crawler has multidirectional traction modules, an expandable body, and sensor modules. A control system communicates with the robotic crawler to provide a control signal to navigate an inspection path within an annular gap of the machine. The inspection path includes axial and radial movements to inspect the annular gap using the sensor modules.
    Type: Application
    Filed: July 18, 2017
    Publication date: January 24, 2019
    Inventors: Selim Akin, Thomas James Batzinger, Airton Rosa da Silva, JR., Selami Haydar Icli, Christopher Paul Markman, Paulo Cesar Debenest, Michele Guarnieri, Shigeo Hirose
  • Publication number: 20190023334
    Abstract: This disclosure provides systems and components for an omnidirectional traction module for use in a robot, such as a crawler robot used in in situ gap inspection in a machine, such as a generator, an electric motor, or a turbomachine. The traction module may include an outer frame and a rotating frame rotatably mounted within the outer frame. At least one drive system may be mounted within the rotating frame. The at least one dive system may have a fixed orientation within the rotating frame. An actuator may be operatively connected to the rotating frame to controllably rotate the rotating frame to a desired orientation for robot travel.
    Type: Application
    Filed: July 18, 2017
    Publication date: January 24, 2019
    Inventors: Selim Akin, Thomas James Batzinger, Selami Haydar Icli, JR., Christopher Paul Markman, Paulo Cesar Debenest, Michele Guarnieri, Giorgio Valsecchi, Giacomo Cimarelli, Shigeo Hirose
  • Publication number: 20190022876
    Abstract: This disclosure provides systems and methods for in situ gap inspection in a machine, such as a generator, an electric motor, or a turbomachine, with an end region. A robotic crawler is configured to navigate an annular gap of the machine. A visual inspection module is connected to the robotic crawler and includes an extension member for extending a camera into the end region to collect visual inspection data.
    Type: Application
    Filed: July 18, 2017
    Publication date: January 24, 2019
    Inventors: Selim Akin, Thomas James Batzinger, Airton Rosa da Silva, JR., Selami Haydar Icli, Christopher Paul Markman, Paulo Cesar Debenest, Michele Guarnieri, Giorgio Valsecchi, Shigeo Hirose
  • Publication number: 20190022848
    Abstract: This disclosure provides systems and methods for in situ gap inspection in a machine, such as a generator, an electric motor, or a turbomachine. A robotic crawler includes an expandable body, multidirectional traction modules, and sensor modules. The expandable body is movable between a collapsed state and an expanded state. The multidirectional traction modules are removably connected to and positioned by the expandable body and configured to engage opposed surfaces within an annular gap of the machine. The sensor modules are removably connected to and supported by the expandable body and include a plurality of sensor types to inspect the annular gap of the machine.
    Type: Application
    Filed: July 18, 2017
    Publication date: January 24, 2019
    Inventors: Selim Akin, Thomas James Batzinger, Airton Rosa da Silva, Selami Haydar Icli, Christopher Paul Markman, Paulo Cesar Debenest, Michele Guarnieri, Shigeo Hirose
  • Publication number: 20190022877
    Abstract: This disclosure provides systems and methods for an actuated sensor module for in situ gap inspection robots. A mounting interface attaches to the sensor module to the robot system. A least one arm is operatively connected to the mounting interface and has a joint. A sensor head is operatively connected to the arm at the joint and an actuator operatively connected to the arm moves the sensor head around the second joint.
    Type: Application
    Filed: July 18, 2017
    Publication date: January 24, 2019
    Inventors: Selim Akin, Thomas James Batzinger, Airton Rosa da Silva, JR., Selami Haydar Icli, Paulo Cesar Debenest, Michele Guarnieri, Giorgio Valsecchi, Giacomo Cimarelli, Shigeo Hirose
  • Patent number: 9967523
    Abstract: Locating systems and methods for components are provided. A component has an exterior surface. A method includes locating a surface feature configured on the exterior surface along an X-axis and a Y-axis by analyzing an image of the component to obtain X-axis data points and Y-axis data points for the surface feature. The method further includes directly measuring the surface feature along a Z-axis to obtain Z-axis data points for the surface feature, wherein the X-axis, the Y-axis and the Z-axis are mutually orthogonal. The method further includes calculating at least two of a pitch value, a roll value or a yaw value for the surface feature.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: May 8, 2018
    Assignee: General Electric Company
    Inventors: Yusuf Eren Ozturk, Selami Haydar Icli, Mustafa Yuvalaklioglu, Bryan J. Germann, Jason Lee Burnside
  • Patent number: 9707645
    Abstract: Certain embodiments of the disclosure may include systems, methods, and apparatus for locating and drilling closed holes of a gas turbine component. According to an example embodiment, the method can include receiving position data associated with one or more holes in a gas turbine component; receiving predefined hole position data from manufacturing data associated with the gas turbine component; determining at least one missing hole, based at least in part on comparing the received position data to the predefined hole position data; and drilling at least one hole in the gas turbine component corresponding to the determined at least one missing hole.
    Type: Grant
    Filed: January 9, 2014
    Date of Patent: July 18, 2017
    Assignee: General Electric Company
    Inventors: Yusuf Eren Ozturk, Selami Haydar Icli
  • Publication number: 20170180679
    Abstract: Locating systems and methods for components are provided. A component has an exterior surface. A method includes locating a surface feature configured on the exterior surface along an X-axis and a Y-axis by analyzing an image of the component to obtain X-axis data points and Y-axis data points for the surface feature. The method further includes directly measuring the surface feature along a Z-axis to obtain Z-axis data points for the surface feature, wherein the X-axis, the Y-axis and the Z-axis are mutually orthogonal. The method further includes calculating at least two of a pitch value, a roll value or a yaw value for the surface feature.
    Type: Application
    Filed: December 16, 2015
    Publication date: June 22, 2017
    Inventors: Yusuf Eren Ozturk, Selami Haydar Icli, Mustafa Yuvalaklioglu, Bryan J. Germann, Jason Lee Burnside
  • Publication number: 20150190890
    Abstract: Certain embodiments of the disclosure may include systems, methods, and apparatus for locating and drilling closed holes of a gas turbine component. According to an example embodiment, the method can include receiving position data associated with one or more holes in a gas turbine component; receiving predefined hole position data from manufacturing data associated with the gas turbine component; determining at least one missing hole, based at least in part on comparing the received position data to the predefined hole position data; and drilling at least one hole in the gas turbine component corresponding to the determined at least one missing hole.
    Type: Application
    Filed: January 9, 2014
    Publication date: July 9, 2015
    Applicant: General Electric Company
    Inventors: Yusuf Eren Ozturk, Selami Haydar Icli