Patents by Inventor Seldon David Benjamin

Seldon David Benjamin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180291726
    Abstract: A system for continuous determination of annulus pressure in subsurface wells comprises one or more electro acoustic technology sensor assemblies permanently installed in each annulus surrounding a subsurface well; and a fiber optic cable in close proximity to the electro acoustic technology sensor assemblies and in communication with a surface distributed acoustic fiber optic interrogator.
    Type: Application
    Filed: December 16, 2015
    Publication date: October 11, 2018
    Inventors: Mikko Jaaskelainen, Jason Edward Therrien, Seldon David Benjamin
  • Publication number: 20180274357
    Abstract: A method may include coiling a fiber line around an exterior side of a casing section. A mold may be temporarily secured to at least a portion of the exterior side of the casing section. An epoxy material may be injected into the mold to form a cover. The cover may extend over the fiber line and the exterior of the casing section. The cover may have a substantially equal thickness for centralizing the casing section when the casing section is positioned downhole. The mold may be removed from the exterior side of the casing section after the epoxy material has cured.
    Type: Application
    Filed: November 2, 2015
    Publication date: September 27, 2018
    Inventors: Mikko Jaaskelainen, Brian Vandellyn Park, Seldon David Benjamin
  • Publication number: 20170269322
    Abstract: A multicore optical fiber with a reference section having a material defining a marked multicore glass optical fiber. The multicore fibers can be in groupings, for example, the groupings can be in the form of one of an optical fiber ribbon covered by a matrix, and a tight buffered cable. Fiber optic connectors can be assembled to the multicore optical fiber at either or both ends, and the colored portion can be associated with the optical fiber connector aligning the optical core elements with the optical connectors. The assembly can have at least one transceiver device with a transmit port and a receive port defining a two-way communication channel. Further aspects describe methods of manufacturing multicore fibers including application of curable coatings and reference sections.
    Type: Application
    Filed: June 6, 2017
    Publication date: September 21, 2017
    Inventors: Seldon David Benjamin, Kevin Wallace Bennett, Douglas LIewellyn Butler, William Carl Hurley
  • Patent number: 9696513
    Abstract: A multicore optical fiber with a reference section having a material defining a marked multicore glass optical fiber. The multicore fibers can be in groupings, for example, the groupings can be in the form of one of an optical fiber ribbon covered by a matrix, and a tight buffered cable. Fiber optic connectors can be assembled to the multicore optical fiber at either or both ends, and the colored portion can be associated with the optical fiber connector aligning the optical core elements with the optical connectors. The assembly can have at least one transceiver device with a transmit port and a receive port defining a two-way communication channel. Further aspects describe methods of manufacturing multicore fibers including application of curable coatings and reference sections.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: July 4, 2017
    Assignee: Corning Optical Communications LLC
    Inventors: Kevin Wallace Bennett, Seldon David Benjamin, Douglas LLewellyn Butler, William Carl Hurley
  • Patent number: 9651754
    Abstract: A fiber optic ribbon includes optical fibers, each including a core surrounded by cladding, and edge bonding rigidly connecting the optical fibers to one. The ribbon further includes a stress-isolation layer surrounding the optical fibers and edge bonding, and a hardened shell surrounding the stress-isolation layer. The edge bonding mitigates independent movement of the optical fibers relative to one another within the stress-isolation layer. At 25° Celsius and at sea level, the Young's modulus of elasticity of the hardened shell is, on average, at least twice that of the stress-isolation layer.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: May 16, 2017
    Assignee: CORNING OPTICAL COMMUNICATIONS LLC
    Inventors: Seldon David Benjamin, David Wesley Chiasson
  • Patent number: 9645336
    Abstract: Optical connections for optical communication having in-line optical paths and magnetic coupling portions are disclosed. In one embodiment, an optical connection includes a lens block having an optical interface portion that defines an in-line optical path without an optical turn for optical signals propagating through the lens block, and a magnetic coupling portion disposed about at least a portion of the lens block. In another embodiment, a method of making an optical connection that includes providing a circuit board having one or more active components and placing a lens block on the circuit board. The lens block includes an optical interface portion defining an in-line optical path. The method further includes placing at least one magnetic coupling portion about the lens block. The at least one magnetic coupling portion is configured as a bulk magnetic material. Electronic devices and fiber optic cable assemblies are also disclosed.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: May 9, 2017
    Assignee: CORNING OPTICAL COMMUNICATIONS LLC
    Inventors: Seldon David Benjamin, Davide Domenico Fortusini, Micah Colen Isenhour, Dennis Michael Knecht, James Phillip Luther
  • Publication number: 20170068060
    Abstract: A fiber optic ribbon includes optical fibers, each including a core surrounded by cladding, and edge bonding rigidly connecting the optical fibers to one. The ribbon further includes a stress-isolation layer surrounding the optical fibers and edge bonding, and a hardened shell surrounding the stress-isolation layer. The edge bonding mitigates independent movement of the optical fibers relative to one another within the stress-isolation layer. At 25° Celsius and at sea level, the Young's modulus of elasticity of the hardened shell is, on average, at least twice that of the stress-isolation layer.
    Type: Application
    Filed: November 17, 2016
    Publication date: March 9, 2017
    Inventors: Seldon David Benjamin, David Wesley Chiasson
  • Patent number: 9564972
    Abstract: A fiber-optic based communication system for facilitating communication between a client device, such as a hand-held computing device, and a host device, such as a desktop computer, a lap-top computer, a tablet device or any other computing device. The communication system includes a cable comprising electronic devices positioned at terminal ends of an optical fiber that provides for communication between the client device and the host device, and the communication occurs via electromagnetic coupling in the near field at at least one end of the cable.
    Type: Grant
    Filed: December 31, 2014
    Date of Patent: February 7, 2017
    Assignee: CORNING INCORPORATED
    Inventors: Seldon David Benjamin, Davide Domenico Fortusini, Anthony Ng'oma, Jacob George
  • Patent number: 9529168
    Abstract: A fiber optic ribbon includes optical fibers, each including a core surrounded by cladding, and edge bonding rigidly connecting the optical fibers to one. The ribbon further includes a stress-isolation layer surrounding the optical fibers and edge bonding, and a hardened shell surrounding the stress-isolation layer. The edge bonding mitigates independent movement of the optical fibers relative to one another within the stress-isolation layer. At 25° Celsius and at sea level, the Young's modulus of elasticity of the hardened shell is, on average, at least twice that of the stress-isolation layer.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: December 27, 2016
    Assignee: CORNING OPTICAL COMMUNICATIONS LLC
    Inventors: Seldon David Benjamin, David Wesley Chiasson
  • Patent number: 9507095
    Abstract: An expanded beam optical connector including a connector body, an optical element in the form of a waveguide or active device, a beam width altering optical lens, and a transmit/receive window. The optical element, the beam width altering optical lens, and the transmit/receive window are configured such that optical signals propagate between the optical element and the transmit/receive window via the beam width altering optical lens. The transmit/receive window includes an optical medium that forms an interior surface of the transmit/receive window, an optical transition layer between the interior surface formed by the optical medium, and a protective layer forming an exterior surface of the transmit/receive window. The connector body is configured to place the exterior surface of the transmit/receive window in close contact with a mating exterior surface of a mating transmit/receive window of a complementary optical device to define a close contact portion.
    Type: Grant
    Filed: May 21, 2014
    Date of Patent: November 29, 2016
    Assignee: CORNING OPTICAL COMMUNICATIONS LLC
    Inventors: Seldon David Benjamin, Robert Adam Modavis
  • Publication number: 20160223774
    Abstract: A multicore optical fiber with a reference section having a material defining a marked multicore glass optical fiber. The multicore fibers can be in groupings, for example, the groupings can be in the form of one of an optical fiber ribbon covered by a matrix, and a tight buffered cable. Fiber optic connectors can be assembled to the multicore optical fiber at either or both ends, and the colored portion can be associated with the optical fiber connector aligning the optical core elements with the optical connectors. The assembly can have at least one transceiver device with a transmit port and a receive port defining a two-way communication channel. Further aspects describe methods of manufacturing multicore fibers including application of curable coatings and reference sections.
    Type: Application
    Filed: December 20, 2013
    Publication date: August 4, 2016
    Applicant: Corning Cable Systems, LLC
    Inventors: Kevin Wallace Bennett, Seldon David Benjamin, Douglas LLewellyn Butler, William Carl Hurley
  • Patent number: 9360392
    Abstract: Calibration of optical time domain reflectometry optical loss measurement in optical fibers having potentially dissimilar light backscattering properties is disclosed. For example, an optical time domain reflectometer (OTDR) can be employed to perform a single-ended optical loss measurement on an optical fiber before and after joinder (e.g., a splice) to determine the efficiency of the joinder. The individual optical fibers provided in a joined optical fiber may have dissimilar backscatter light collection efficiencies resulting in an erroneous OTDR optical loss measurement, because an OTDR assumes the backscatter light collection efficiency of the joined optical fiber is identical before and after joinder. An OTDR calibration factor is first determined before an OTDR optical loss measurement of the joined optical fiber is made. The OTDR calibration factor is used to correct any error in an OTDR optical loss measurement of the joined optical fiber.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: June 7, 2016
    Assignee: CORNING CABLE SYSTEMS LLC
    Inventor: Seldon David Benjamin
  • Publication number: 20160116660
    Abstract: The present invention is directed to an optical fiber that includes a glass core region that has nano-sized structures configured to scatter light propagating in the glass core region. The glass core region has an average refractive index navg. The fiber includes an interior glass cladding region that has an interior cladding refractive index n2 that is less than navg. The fiber includes an outer cladding region that has an outer cladding refractive index n3 that is less than n2. A refractive index difference of n2?n3 corresponds to a bend uniformity diameter; the light exiting the outer cladding at a fiber bending location is substantially non-uniform when a bending diameter of the fiber bending location is less than the bend uniformity diameter.
    Type: Application
    Filed: October 21, 2015
    Publication date: April 28, 2016
    Inventors: Seldon David Benjamin, Kevin Wallace Bennett
  • Patent number: 9261651
    Abstract: Ferrule assemblies having at least one coded magnetic array are disclosed. In one embodiment, a ferrule assembly includes a ferrule body having a coupling surface and a coded magnetic array having a plurality of magnetic regions. The coded magnetic array may be located within the coupling surface. The ferrule assembly further includes a lens component located within the ferrule body. The lens component may have a facet at the coupling surface of the ferrule body at a predetermined angle. In another embodiment, a translating ferrule assembly includes an optical interface and a coded magnetic array, and is configured to translate within a connector housing of an optical connector when coupled to an electronics device. Optical couplings having a coded magnetic array and sockets for receiving a connector are also disclosed.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: February 16, 2016
    Assignee: CORNING OPTICAL COMMUNICATIONS LLC
    Inventors: Seldon David Benjamin, Jeffery Alan DeMeritt, Micah Colen Isenhour, Dennis Michael Knecht, James Phillip Luther
  • Patent number: 9158075
    Abstract: Fiber optic connectors and other structures that can be easily and quickly prepared by the craft for termination and/or connectorization in the field are disclosed. More specifically, the fiber optic connectors and other structures disclosed are intended for use with glass optical fibers having a large core. In one embodiment, the fiber optic connector includes a ferrule having a bore sized to receive an optical fiber and a buffer layer at a front end face of the ferrule. Methods of making the fiber optic connectors and other structures are also disclosed. The methods disclosed allow “rough cutting” of the optical fibers with a buffer layer thereon by the craft.
    Type: Grant
    Filed: October 11, 2010
    Date of Patent: October 13, 2015
    Assignee: Corning Incorporated
    Inventors: Seldon David Benjamin, Michael de Jong, Radawan Hall, Micah Colen Isenhour, Dennis Michael Knecht, James Phillip Luther, Randy LaRue McClure
  • Patent number: 9151900
    Abstract: Optical couplings for making and optical connection between one or more devices are disclosed. In one embodiment, an optical coupling includes a coupling face, an optical interface within the coupling face, an optical component positioned within the optical interface, and at least one coded magnetic array. The at least one coded magnetic array may include a plurality of magnetic regions configured aid in mating the optical component with a corresponding optical component of a complementary mated optical coupling to a predetermined tolerance for optical communication. Optical cable assemblies and electronics devices having optical couplings with optical interfaces using coded magnetic arrays are also disclosed.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: October 6, 2015
    Assignee: Corning Optical Communications LLC
    Inventors: Seldon David Benjamin, Jeffery Alan DeMeritt, Micah Colen Isenhour, Dennis Michael Knecht, James Phillip Luther
  • Publication number: 20150147066
    Abstract: A fiber-optic based communication system for facilitating communication between a client device, such as a hand-held computing device, and a host device, such as a desktop computer, a lap-top computer, a tablet device or any other computing device. The communication system includes a cable comprising electronic devices positioned at terminal ends of an optical fiber that provides for communication between the client device and the host device, and the communication occurs via electromagnetic coupling in the near field at at least one end of the cable.
    Type: Application
    Filed: December 31, 2014
    Publication date: May 28, 2015
    Inventors: Seldon David Benjamin, Davide Domenico Fortusini, Anthony Ng'oma, Jacob George
  • Patent number: 8998502
    Abstract: According to at least one exemplary embodiment a ferrule, comprises: (i) a bore extending from a rear of the ferrule to a front of the ferrule, wherein the bore is sized to receive an optical fiber and a buffer layer at one end face of the ferrule; and (ii) an end stop sized to engage the buffer layer and to contain the optical fiber within said ferrule. In some embodiments the ferrule includes an optical fiber situated within the bore.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: April 7, 2015
    Assignee: Corning Incorporated
    Inventors: Seldon David Benjamin, Michael de Jong, Randy LaRue McClure, Howard Clark Schwartz
  • Publication number: 20150030297
    Abstract: A fiber optic ribbon includes optical fibers, each including a core surrounded by cladding, and edge bonding rigidly connecting the optical fibers to one. The ribbon further includes a stress-isolation layer surrounding the optical fibers and edge bonding, and a hardened shell surrounding the stress-isolation layer. The edge bonding mitigates independent movement of the optical fibers relative to one another within the stress-isolation layer. At 25° Celsius and at sea level, the Young's modulus of elasticity of the hardened shell is, on average, at least twice that of the stress-isolation layer.
    Type: Application
    Filed: July 10, 2014
    Publication date: January 29, 2015
    Inventors: Seldon David Benjamin, David Wesley Chiasson
  • Publication number: 20150003783
    Abstract: An expanded beam optical connector including a connector body, an optical element in the form of a waveguide or active device, a beam width altering optical lens, and a transmit/receive window. The optical element, the beam width altering optical lens, and the transmit/receive window are configured such that optical signals propagate between the optical element and the transmit/receive window via the beam width altering optical lens. The transmit/receive window includes an optical medium that forms an interior surface of the transmit/receive window, an optical transition layer between the interior surface formed by the optical medium, and a protective layer forming an exterior surface of the transmit/receive window. The connector body is configured to place the exterior surface of the transmit/receive window in close contact with a mating exterior surface of a mating transmit/receive window of a complementary optical device to define a close contact portion.
    Type: Application
    Filed: May 21, 2014
    Publication date: January 1, 2015
    Applicant: CORNING OPTICAL COMMUNICATIONS LLC
    Inventors: Seldon David Benjamin, Robert Adam Modavis