Patents by Inventor Seng Guan Chow

Seng Guan Chow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160111410
    Abstract: A semiconductor device has a first semiconductor die mounted over a carrier. An interposer frame has an opening in the interposer frame and a plurality of conductive pillars formed over the interposer frame. The interposer is mounted over the carrier and first die with the conductive pillars disposed around the die. A cavity can be formed in the interposer frame to contain a portion of the first die. An encapsulant is deposited through the opening in the interposer frame over the carrier and first die. Alternatively, the encapsulant is deposited over the carrier and first die and the interposer frame is pressed against the encapsulant. Excess encapsulant exits through the opening in the interposer frame. The carrier is removed. An interconnect structure is formed over the encapsulant and first die. A second semiconductor die can be mounted over the first die or over the interposer frame.
    Type: Application
    Filed: December 16, 2015
    Publication date: April 21, 2016
    Applicant: STATS ChipPAC, Ltd.
    Inventors: Reza A. Pagaila, Seng Guan Chow, Seung Uk Yoon, Byung Tai Do, Linda Pei Ee Chua
  • Publication number: 20160104731
    Abstract: A semiconductor device has a substrate containing a transparent or translucent material. A spacer is mounted to the substrate. A first semiconductor die has an active region and first conductive vias electrically connected to the active region. The active region can include a sensor responsive to light received through the substrate. The first die is mounted to the spacer with the active region positioned over an opening in the spacer and oriented toward the substrate. An encapsulant is deposited over the first die and substrate. An interconnect structure is formed over the encapsulant and first die. The interconnect structure is electrically connected through the first conductive vias to the active region. A second semiconductor die having second conductive vias can be mounted to the first die with the first conductive vias electrically connected to the second conductive vias.
    Type: Application
    Filed: December 18, 2015
    Publication date: April 14, 2016
    Applicant: STATS ChipPAC, Ltd.
    Inventors: Seng Guan Chow, Lee Sun Lim, Rui Huang, Xu Sheng Bao, Ma Phoo Pwint Hlaing
  • Patent number: 9299648
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a package substrate having a component side and a system side; depositing a solder resist layer on the component side of the package substrate; patterning groups of access openings and a die mount opening in the solder resist layer; attaching an integrated circuit die in the die mount opening; forming conductive contacts in the access openings; and attaching system interconnects to the system side of the package substrate including controlling a coplanarity of the system interconnects by the solder resist layer.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: March 29, 2016
    Assignee: STATS ChipPAC Ltd.
    Inventors: Il Kwon Shim, Seng Guan Chow, Heap Hoe Kuan
  • Patent number: 9293350
    Abstract: A method of manufacturing a semiconductor package system includes: providing a first substrate; providing a second substrate having a cavity, the second substrate being attached to the first substrate; connecting the first substrate to the second substrate using an interconnect, the interconnect being in the cavity; and attaching a semiconductor device to the first substrate or the second substrate.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: March 22, 2016
    Assignee: STATS ChipPAC Ltd.
    Inventors: Seng Guan Chow, Rui Huang, Heap Hoe Kuan
  • Patent number: 9275877
    Abstract: A semiconductor device has a first insulating layer formed over a carrier. A first conductive layer is formed over the first insulating layer. A second insulating layer is formed over the first conductive layer. Vias are formed through the second insulating layer. A second conductive layer is formed over the second insulating layer and extends into the vias. A semiconductor die is mounted to the second conductive layer. A bond wire is formed between a contact pad on the semiconductor die and the second conductive layer. The second conductive layer extends to a mounting site of the semiconductor die to minimize the bond wire span. An encapsulant is deposited over the semiconductor die. A portion of the first insulating layer is removed to expose the second conductive layer. A portion of the first conductive layer is removed to electrically isolate remaining portions of the first conductive layer.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: March 1, 2016
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Yaojian Lin, Rui Huang, Heap Hoe Kuan, Seng Guan Chow
  • Patent number: 9257356
    Abstract: A semiconductor device has a conductive layer formed on a substrate. The conductive layer has a first portion constituting contact pads and a second portion constituting an integrated passive device such as an inductor. A spacer is formed on the substrate around the second portion of the conductive layer. The spacer can be insulating material or conductive material for shielding. A semiconductor die is mounted to the spacer. An electrical connection is formed between contact pads on the semiconductor die and the contact pads on the substrate. An encapsulant is formed around the semiconductor die, electrical connections, spacer, and conductive layer. The substrate is removed to expose the conductive layer. An interconnect structure is formed on the backside of the substrate. The interconnect structure is electrically connected to the conductive layer. The semiconductor device can be integrated into a package.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: February 9, 2016
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Rui Huang, Heap Hoe Kuan, Yaojian Lin, Seng Guan Chow
  • Patent number: 9252066
    Abstract: A semiconductor device has a protective layer formed over an active surface of a semiconductor wafer. The semiconductor die with pre-applied protective layer are moved from the semiconductor wafer and mounted on a carrier. The semiconductor die and contact pads on the carrier are encapsulated. The carrier is removed. A first insulating layer is formed over the pre-applied protective layer and contact pads. Vias are formed in the first insulating layer and pre-applied protective layer to expose interconnect sites on the semiconductor die. An interconnect structure is formed over the first insulating layer in electrical contact with the interconnect sites on the semiconductor die and contact pads. The interconnect structure has a redistribution layer formed on the first insulating layer, a second insulating layer formed on the redistribution layer, and an under bump metallization layer formed over the second dielectric in electrical contact with the redistribution layer.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: February 2, 2016
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Il Kwon Shim, Yaojian Lin, Seng Guan Chow
  • Patent number: 9252172
    Abstract: A semiconductor device has a substrate containing a transparent or translucent material. A spacer is mounted to the substrate. A first semiconductor die has an active region and first conductive vias electrically connected to the active region. The active region can include a sensor responsive to light received through the substrate. The first die is mounted to the spacer with the active region positioned over an opening in the spacer and oriented toward the substrate. An encapsulant is deposited over the first die and substrate. An interconnect structure is formed over the encapsulant and first die. The interconnect structure is electrically connected through the first conductive vias to the active region. A second semiconductor die having second conductive vias can be mounted to the first die with the first conductive vias electrically connected to the second conductive vias.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: February 2, 2016
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Seng Guan Chow, Lee Sun Lim, Rui Huang, Xusheng Bao, Ma Phoo Pwint Hlaing
  • Patent number: 9240380
    Abstract: A semiconductor device has a first semiconductor die mounted over a carrier. An interposer frame has an opening in the interposer frame and a plurality of conductive pillars formed over the interposer frame. The interposer is mounted over the carrier and first die with the conductive pillars disposed around the die. A cavity can be formed in the interposer frame to contain a portion of the first die. An encapsulant is deposited through the opening in the interposer frame over the carrier and first die. Alternatively, the encapsulant is deposited over the carrier and first die and the interposer frame is pressed against the encapsulant. Excess encapsulant exits through the opening in the interposer frame. The carrier is removed. An interconnect structure is formed over the encapsulant and first die. A second semiconductor die can be mounted over the first die or over the interposer frame.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: January 19, 2016
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Reza A. Pagaila, Seng Guan Chow, Seung Uk Yoon
  • Patent number: 9202777
    Abstract: A semiconductor package system includes: providing a leadframe having inner frame bars, outer frame bars, a die pad, tiebars, and rows of leads, the inner frame bars being coplanar with outer frame bars; attaching a semiconductor chip to the die pad; attaching bond wires between the semiconductor chip and the rows of leads; encapsulating the semiconductor chip, the bond wires, the inner frame bars, the outer frame bars, the die pad, the tiebars, and the rows of leads in an encapsulant; cutting a groove to remove the inner frame bars; and singulating the leadframe and the encapsulant to remove the outer frame bars.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: December 1, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventors: Lionel Chien Hui Tay, Seng Guan Chow, Zigmund Ramirez Camacho
  • Patent number: 9177898
    Abstract: An integrated circuit package system includes: forming a first locking terminal having a first terminal recess with a top portion of the first terminal recess narrower than a bottom portion of the first terminal recess; connecting an integrated circuit and the first locking terminal; and forming a package encapsulation over the integrated circuit and in the first locking terminal.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: November 3, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventors: Il Kwon Shim, Seng Guan Chow
  • Patent number: 9171769
    Abstract: A semiconductor device has a plurality of semiconductor die mounted active surface to a carrier. An encapsulant is deposited over semiconductor die and carrier. Openings are formed through a surface of the encapsulant to divide the encapsulant into discontinuous segments. The openings have straight or beveled sidewalls. The openings can be formed partially through the surface of the encapsulant in an area between the semiconductor die. The openings can be formed partially through the surface of the encapsulant over the semiconductor die. The openings can be formed through the encapsulant in an area between the semiconductor die. A portion of the surface of the encapsulant is removed down to a bottom of the openings. The carrier is removed. An interconnect structure is formed over the encapsulant and the semiconductor die. The encapsulant is cured prior to or after forming the openings.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: October 27, 2015
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Seng Guan Chow, Lee Sun Lim, Rui Huang, Xusheng Bao, Ma Phoo Pwint Hlaing
  • Patent number: 9123733
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a sacrificial carrier assembly having a stack interconnector thereover; mounting an integrated circuit having a connector over the sacrificial carrier assembly with the connector over the stack interconnector; dispensing an underfill material between the sacrificial carrier assembly and the integrated circuit with the underfill material substantially free of a void; encapsulating the integrated circuit over the sacrificial carrier assembly and the underfill material; exposing the stack interconnector by removing the sacrificial carrier assembly; and forming a base array over the underfill material and the stack interconnector.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: September 1, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventors: Rui Huang, Heap Hoe Kuan, Yaojian Lin, Seng Guan Chow
  • Publication number: 20150228552
    Abstract: A semiconductor device has a semiconductor die and conductive layer formed over a surface of the semiconductor die. A first channel can be formed in the semiconductor die. An encapsulant is deposited over the semiconductor die. A second channel can be formed in the encapsulant. A first insulating layer is formed over the semiconductor die and first conductive layer and into the first channel. The first insulating layer extends into the second channel. The first insulating layer has characteristics of tensile strength greater than 150 MPa, elongation between 35-150%, and thickness of 2-30 micrometers. A second insulating layer can be formed over the semiconductor die prior to forming the first insulating layer. An interconnect structure is formed over the semiconductor die and encapsulant. The interconnect structure is electrically connected to the first conductive layer. The first insulating layer provides stress relief during formation of the interconnect structure.
    Type: Application
    Filed: April 27, 2015
    Publication date: August 13, 2015
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Yaojian Lin, Pandi C. Marimuthu, Kang Chen, Hin Hwa Goh, Yu Gu, Il Kwon Shim, Rui Huang, Seng Guan Chow, Jianmin Fang, Xia Feng
  • Patent number: 9099455
    Abstract: A semiconductor package includes a post carrier having a base plate and plurality of conductive posts. A photosensitive encapsulant is deposited over the base plate of the post carrier and around the conductive posts. The photosensitive encapsulant is etched to expose a portion of the base plate of the post carrier. A semiconductor die is mounted to the base plate of the post carrier within the etched portions of the photosensitive encapsulant. A second encapsulant is deposited over the semiconductor die. A first circuit build-up layer is formed over the second encapsulant. The first circuit build-up layer is electrically connected to the conductive posts. The base plate of the post carrier is removed and a second circuit build-up layer is formed over the semiconductor die and the photosensitive encapsulant opposite the first circuit build-up layer. The second circuit build-up layer is electrically connected to the conductive posts.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: August 4, 2015
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Seng Guan Chow, Il Kwon Shim, Heap Hoe Kuan, Rui Huang
  • Patent number: 9087930
    Abstract: A semiconductor device has a semiconductor die and conductive layer formed over a surface of the semiconductor die. A first channel can be formed in the semiconductor die. An encapsulant is deposited over the semiconductor die. A second channel can be formed in the encapsulant. A first insulating layer is formed over the semiconductor die and first conductive layer and into the first channel. The first insulating layer extends into the second channel. The first insulating layer has characteristics of tensile strength greater than 150 MPa, elongation between 35-150%, and thickness of 2-30 micrometers. A second insulating layer can be formed over the semiconductor die prior to forming the first insulating layer. An interconnect structure is formed over the semiconductor die and encapsulant. The interconnect structure is electrically connected to the first conductive layer. The first insulating layer provides stress relief during formation of the interconnect structure.
    Type: Grant
    Filed: May 9, 2014
    Date of Patent: July 21, 2015
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Yaojian Lin, Pandi C. Marimuthu, Kang Chen, Hin Hwa Goh, Yu Gu, Il Kwon Shim, Rui Huang, Seng Guan Chow, Jianmin Fang, Xia Feng
  • Patent number: 9084377
    Abstract: An integrated circuit package system is provided including providing a substrate having a contact pad, forming a first conductor having a first melting point over the contact pad, forming a second conductor having a second melting point over the first conductor with the first melting point higher than the second melting point, and mounting a first device over the second conductor.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: July 14, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventor: Seng Guan Chow
  • Publication number: 20150179587
    Abstract: A semiconductor device is made by forming a first conductive layer over a sacrificial carrier. A conductive pillar is formed over the first conductive layer. An active surface of a semiconductor die is mounted to the carrier. An encapsulant is deposited over the semiconductor die and around the conductive pillar. The carrier and adhesive layer are removed. A stress relief insulating layer is formed over the active surface of the semiconductor die and a first surface of the encapsulant. The stress relief insulating layer has a first thickness over the semiconductor die and a second thickness less than the first thickness over the encapsulant. A first interconnect structure is formed over the stress relief insulating layer. A second interconnect structure is formed over a second surface of encapsulant opposite the first interconnect structure. The first and second interconnect structures are electrically connected through the conductive pillar.
    Type: Application
    Filed: March 3, 2015
    Publication date: June 25, 2015
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Il Kwon Shim, Seng Guan Chow, Yaojian Yaojian
  • Patent number: 9059186
    Abstract: An embedded semiconductor die package is made by mounting a frame carrier to a temporary carrier with an adhesive. The frame carrier includes die mounting sites each including a leadframe interconnect structure around a cavity. A semiconductor die is disposed in each cavity. An encapsulant is deposited in the cavity over the die. A package interconnect structure is formed over the leadframe interconnect structure and encapsulant. The package interconnect structure and leadframe interconnect structure are electrically connected to the die. The frame carrier is singulated into individual embedded die packages. The semiconductor die can be vertically stacked or placed side-by-side within the cavity. The embedded die packages can be stacked and electrically interconnected through the leadframe interconnect structure. A semiconductor device can be mounted to the embedded die package and electrically connected to the die through the leadframe interconnect structure.
    Type: Grant
    Filed: January 13, 2014
    Date of Patent: June 16, 2015
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Il Kwon Shim, Seng Guan Chow, Heap Hoe Kuan
  • Publication number: 20150145126
    Abstract: A semiconductor device has a stress relief buffer mounted to a temporary substrate in locations designated for bump formation. The stress relief buffer can be a multi-layer composite material such as a first compliant layer, a silicon layer formed over the first compliant layer, and a second compliant layer formed over the silicon layer. A semiconductor die is also mounted to the temporary substrate. The stress relief buffer can be thinner than the semiconductor die. An encapsulant is deposited between the semiconductor die and stress relief buffer. The temporary substrate is removed. An interconnect structure is formed over the semiconductor die, encapsulant, and stress relief buffer. The interconnect structure is electrically connected to the semiconductor die. A stiffener layer can be formed over the stress relief buffer and encapsulant. A circuit layer containing active devices, passive devices, conductive layers, and dielectric layers can be formed within the stress relief buffer.
    Type: Application
    Filed: December 9, 2014
    Publication date: May 28, 2015
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Yaojian Lin, II Kwon Shim, Seng Guan Chow