Patents by Inventor Seok-Joo Doh

Seok-Joo Doh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7586159
    Abstract: A semiconductor device includes first and second transistor devices. The first device includes a first substrate region, a first gate electrode, and a first gate dielectric. The first gate dielectric is located between the first substrate region and the first gate electrode. The second device includes a second substrate region, a second gate electrode, and a second gate dielectric. The second gate dielectric is located between the second substrate region and the second gate electrode. The first gate dielectric includes a first high-k layer having a dielectric constant of 8 or more. Likewise, the second gate dielectric includes a second high-k layer having a dielectric constant of 8 or more. The second high-k layer has a different material composition than the first high-k layer.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: September 8, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Ho Lee, Ho-Kyu Kang, Yun-Seok Kim, Seok-Joo Doh, Hyung-Suk Jung
  • Patent number: 7494940
    Abstract: High dielectric layers formed from layers of hafnium oxide, zirconium oxide, aluminum oxide, yttrium oxide, and/or other metal oxides and silicates disposed on silicon substrates or ozone oxide layers over silicon substrates may be nitrided and post thermally treated by oxidation, annealing, or a combination of oxidation and annealing to form high dielectric layers having superior mobility and interfacial characteristics.
    Type: Grant
    Filed: January 17, 2006
    Date of Patent: February 24, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seok-Joo Doh, Hyung-suk Jung, Nae-in Lee, Jong-ho Lee, Yun-seok Kim
  • Publication number: 20070176242
    Abstract: A semiconductor device includes first and second transistor devices. The first device includes a first substrate region, a first gate electrode, and a first gate dielectric. The first gate dielectric is located between the first substrate region and the first gate electrode. The second device includes a second substrate region, a second gate electrode, and a second gate dielectric. The second gate dielectric is located between the second substrate region and the second gate electrode. The first gate dielectric includes a first high-k layer having a dielectric constant of 8 or more. Likewise, the second gate dielectric includes a second high-k layer having a dielectric constant of 8 or more. The second high-k layer has a different material composition than the first high-k layer.
    Type: Application
    Filed: March 21, 2007
    Publication date: August 2, 2007
    Inventors: Jong-Ho Lee, Ho-Kyu Kang, Yun-Seok Kim, Seok-Joo Doh, Hyung-Suk Jung
  • Publication number: 20060257563
    Abstract: There are provided methods of fabricating a silicon-doped metal oxide layer on a semiconductor substrate using an atomic layer deposition technique. The methods include an operation of repeatedly performing a metal oxide layer formation cycle K times and an operation of repeatedly performing a silicon-doped metal oxide layer formation cycle Q times. At least one of the values K and Q is an integer of 2 or more. K and Q are integers ranging from 1 to about 10 respectively. The metal oxide layer formation cycle includes the steps of supplying a metal source gas to a reactor containing the substrate, and then injecting an oxide gas into the reactor. The silicon-doped metal oxide layer formation cycle includes supplying a metal source gas including silicon into a reactor containing the substrate, and then injecting an oxide gas into the reactor.
    Type: Application
    Filed: January 11, 2006
    Publication date: November 16, 2006
    Inventors: Seok-Joo Doh, Shi-Woo Rhee, Jong-Pyo Kim, Jung-Hyoung Lee, Jong-Ho Lee, Yun-Seok Kim
  • Publication number: 20060115993
    Abstract: High dielectric layers formed from layers of hafnium oxide, zirconium oxide, aluminum oxide, yttrium oxide, and/or other metal oxides and silicates disposed on silicon substrates or ozone oxide layers over silicon substrates may be nitrided and post thermally treated by oxidation, annealing, or a combination of oxidation and annealing to form high dielectric layers having superior mobility and interfacial characteristics.
    Type: Application
    Filed: January 17, 2006
    Publication date: June 1, 2006
    Inventors: Seok-Joo Doh, Hyung-suk Jung, Nae-in Lee, Jong-ho Lee, Yun-seok Kim
  • Patent number: 7037863
    Abstract: High dielectric layers formed from layers of hafnium oxide, zirconium oxide, aluminum oxide, yttrium oxide, and/or other metal oxides and silicates disposed on silicon substrates or ozone oxide layers over silicon substrates may be nitrided and post thermally treated by oxidation, annealing, or a combination of oxidation and annealing to form high dielectric layers having superior mobility and interfacial characteristics.
    Type: Grant
    Filed: September 10, 2003
    Date of Patent: May 2, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seok-Joo Doh, Hyung-suk Jung, Nae-in Lee, Jong-ho Lee, Yun-seok Kim
  • Publication number: 20060022252
    Abstract: There are provided a nonvolatile memory device and a method of fabricating the same. A gate region of the nonvolatile memory device is formed as a stack structure including a tunnel oxide layer, a trapping layer, a blocking layer and a control gate electrode. The trapping layer is formed of a high-k dielectric having a higher dielectric constant than that of the tunnel oxide layer. When the trapping layer is formed of high-k dielectric, an EOT in a same thickness can be reduced, and excitation of electrons of the control gate electrode to the tunnel oxide layer due to a high potential barrier relative to the tunnel oxide layer is prevented so that program and erase voltages can be further reduced. As such, a problem that the tunnel oxide layer is damaged due to the conventional high program and erase voltages can be solved by reducing the program and erase voltages, and program and erase speeds of the transistor can be further improved.
    Type: Application
    Filed: July 29, 2005
    Publication date: February 2, 2006
    Inventors: Seok-Joo Doh, Jong-Pyo Kim, Jong-Ho Lee, Ki-Chul Kim
  • Publication number: 20050148127
    Abstract: A semiconductor device is disclosed comprising an improved gate dielectric layer formed of a high dielectric alloy-like composite together with a method for fabricating the same. The semiconductor device comprises a semiconductor substrate and a gate dielectric layer consisting essentially of a high-k alloy-like composite containing a first element, a second element, and oxygen (O). The first element is at least one member selected from a first group consisting of Al, La, Y, Ga, and In. The second element is at least one member selected from a second group consisting of Hf, Zr, and Ti. A diffusion barrier is formed on the gate dielectric layer, and a gate is formed on the diffusion barrier.
    Type: Application
    Filed: November 15, 2004
    Publication date: July 7, 2005
    Inventors: Hyung-Suk Jung, Jong-Ho Lee, Seok-Joo Doh, Yun-Seok Kim
  • Publication number: 20050098839
    Abstract: A semiconductor device includes first and second transistor devices. The first device includes a first substrate region, a first gate electrode, and a first gate dielectric. The first gate dielectric is located between the first substrate region and the first gate electrode. The second device includes a second substrate region, a second gate electrode, and a second gate dielectric. The second gate dielectric is located between the second substrate region and the second gate electrode. The first gate dielectric includes a first high-k layer having a dielectric constant of 8 or more. Likewise, the second gate dielectric includes a second high-k layer having a dielectric constant of 8 or more. The second high-k layer has a different material composition than the first high-k layer.
    Type: Application
    Filed: September 1, 2004
    Publication date: May 12, 2005
    Inventors: Jong-Ho Lee, Ho-Kyu Kang, Yun-Seok Kim, Seok-Joo Doh, Hyung-Suk Jung
  • Publication number: 20050037630
    Abstract: High dielectric layers formed from layers of hafnium oxide, zirconium oxide, aluminum oxide, yttrium oxide, and/or other metal oxides and silicates disposed on silicon substrates or ozone oxide layers over silicon substrates may be nitrided and post thermally treated by oxidation, annealing, or a combination of oxidation and annealing to form high dielectric layers having superior mobility and interfacial characteristics.
    Type: Application
    Filed: September 10, 2003
    Publication date: February 17, 2005
    Inventors: Seok-Joo Doh, Hyung-suk Jung, Nae-in Lee, Jong-ho Lee, Yun-seok Kim