Patents by Inventor Sergei L. Voronov

Sergei L. Voronov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9859248
    Abstract: Embodiments of the present disclosure are directed to die adhesive films for integrated circuit (IC) packaging, as well as methods for forming and removing die adhesive films and package assemblies and systems incorporating such die adhesive films. A die adhesive film may be transparent to a first wavelength of light and photoreactive to a second wavelength of light. In some embodiments, the die adhesive film may be applied to a back or “inactive” side of a die, and the die surface may be detectable through the die adhesive film. The die adhesive film may be cured and/or marked with laser energy having the second wavelength of light. The die adhesive film may include a thermochromic dye and/or nanoparticles configured to provide laser mark contrast. UV laser energy may be used to remove the die adhesive film in order to expose underlying features such as TSV pads.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: January 2, 2018
    Assignee: INTEL CORPORATION
    Inventors: Danish Faruqui, Edward R. Prack, Sergei L. Voronov, David K. Wilkinson, Jr., Tony Dambrauskas, Lars D. Skoglund, Yoshihiro Tomita, Mihir A. Oka, Rajen C. Dias
  • Publication number: 20160307869
    Abstract: Embodiments of the present disclosure are directed to die adhesive films for integrated circuit (IC) packaging, as well as methods for forming and removing die adhesive films and package assemblies and systems incorporating such die adhesive films. A die adhesive film may be transparent to a first wavelength of light and photoreactive to a second wavelength of light. In some embodiments, the die adhesive film may be applied to a back or “inactive” side of a die, and the die surface may be detectable through the die adhesive film. The die adhesive film may be cured and/or marked with laser energy having the second wavelength of light. The die adhesive film may include a thermochromic dye and/or nanoparticles configured to provide laser mark contrast. UV laser energy may be used to remove the die adhesive film in order to expose underlying features such as TSV pads.
    Type: Application
    Filed: June 29, 2016
    Publication date: October 20, 2016
    Inventors: Danish Faruqui, Edward R. Prack, Sergei L. Voronov, David K. Wilkinson, JR., Tony Dambrauskas, Lars D. Skoglund, Yoshihiro Tomita, Mihir A. Oka, Rajen C. Dias
  • Patent number: 9412702
    Abstract: Embodiments of the present disclosure are directed to die adhesive films for integrated circuit (IC) packaging, as well as methods for forming and removing die adhesive films and package assemblies and systems incorporating such die adhesive films. A die adhesive film may be transparent to a first wavelength of light and photoreactive to a second wavelength of light. In some embodiments, the die adhesive film may be applied to a back or “inactive” side of a die, and the die surface may be detectable through the die adhesive film. The die adhesive film may be cured and/or marked with laser energy having the second wavelength of light. The die adhesive film may include a thermochromic dye and/or nanoparticles configured to provide laser mark contrast. UV laser energy may be used to remove the die adhesive film in order to expose underlying features such as TSV pads.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: August 9, 2016
    Assignee: Intel Corporation
    Inventors: Danish Faruqui, Edward R. Prack, Sergei L. Voronov, David K. Wilkinson, Tony Dambrauskas, Lars D. Skoglund, Yoshihiro Tomita, Mihir A. Oka, Rajen C. Dias
  • Publication number: 20140264951
    Abstract: Embodiments of the present disclosure are directed to die adhesive films for integrated circuit (IC) packaging, as well as methods for forming and removing die adhesive films and package assemblies and systems incorporating such die adhesive films. A die adhesive film may be transparent to a first wavelength of light and photoreactive to a second wavelength of light. In some embodiments, the die adhesive film may be applied to a back or “inactive” side of a die, and the die surface may be detectable through the die adhesive film. The die adhesive film may be cured and/or marked with laser energy having the second wavelength of light. The die adhesive film may include a thermochromic dye and/or nanoparticles configured to provide laser mark contrast. UV laser energy may be used to remove the die adhesive film in order to expose underlying features such as TSV pads.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Inventors: Danish Faruqui, Edward R. Prack, Sergei L. Voronov, David K. Wilkinson, JR., Tony Dambrauskas, Lars D. Skoglund, Yoshihiro Tomita, Mihir A. Oka, Rajen C. Dias
  • Publication number: 20140175657
    Abstract: Apparatus including a die including a device side with contact points; and a build-up carrier disposed on the device side of the die; and a film disposed on the back side of the die, the film including a markable material including a mark contrast of at least 20 percent. Method including forming a body of a build-up carrier adjacent a device side of a die; and forming a film on a back side of the die, the film including a markable material including a mark contrast of at least 20 percent. Apparatus including a package including a microprocessor disposed in a carrier; a film on the back side of the microprocessor, the film including a markable material including a mark contrast of at least 20 percent; and a printed circuit board coupled to at least a portion of the plurality of conductive posts of the carrier.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Inventors: Mihir A. Oka, Rahul N. Manepalli, Dingying Xu, Yosuke Kanaoka, Sergei L. Voronov, Dong Hai Sun
  • Patent number: 8173552
    Abstract: Methods of forming a microelectronic structure are described. Embodiments of those methods include forming a liquid on a region of a die, and then forming an identification mark through the liquid on the die.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: May 8, 2012
    Assignee: Intel Corporation
    Inventors: George P. Vakanas, Sergei L. Voronov, Luey Chon Ng, George E. Malouf
  • Patent number: 8076776
    Abstract: An integrated circuit package comprises a package substrate (210, 410), an electrically insulating material (220, 420) adjacent to the package substrate, and a mark (230, 420) on the electrically insulating material. The mark is such that a visual contrast between the mark and the electrically insulating material is maximized when the mark and the electrically insulating material are exposed to coaxial illumination. In one embodiment the electrically insulating material over the package substrate has a first surface roughness and a mark on the solder resist material has a second surface roughness that is no more than approximately twenty times greater than the first surface roughness.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: December 13, 2011
    Assignee: Intel Corporation
    Inventors: Dhruv P. Bhate, Sergei L. Voronov
  • Publication number: 20110031590
    Abstract: Methods of forming a microelectronic structure are described. Embodiments of those methods include forming a liquid on a region of a die, and then forming an identification mark through the liquid on the die.
    Type: Application
    Filed: August 4, 2009
    Publication date: February 10, 2011
    Inventors: George P. Vakanas, Sergei L. Voronov, Luey Chon Ng, George E. Malouf
  • Publication number: 20100314750
    Abstract: An integrated circuit package comprises a package substrate (210, 410), an electrically insulating material (220, 420) adjacent to the package substrate, and a mark (230, 420) on the electrically insulating material. The mark is such that a visual contrast between the mark and the electrically insulating material is maximized when the mark and the electrically insulating material are exposed to coaxial illumination. In one embodiment the electrically insulating material over the package substrate has a first surface roughness and a mark on the solder resist material has a second surface roughness that is no more than approximately twenty times greater than the first surface roughness.
    Type: Application
    Filed: June 16, 2009
    Publication date: December 16, 2010
    Inventors: Dhruv P. Bhate, Sergei L. Voronov
  • Patent number: 7611966
    Abstract: A method is described for laser scribing or dicing portions of a workpiece using multi-source laser systems. In one embodiment, a first laser melts portions of the workpiece prior to a second laser ablating the portions of the workpiece.
    Type: Grant
    Filed: May 5, 2005
    Date of Patent: November 3, 2009
    Assignee: Intel Corporation
    Inventors: Eric J. Li, Sergei L. Voronov, Christopher L. Rumer
  • Patent number: 7303977
    Abstract: A laser micromachining method is disclosed wherein a workpiece is milled using an incident beam from a laser beam focused above the surface of the workpiece. The incident beam is guided by a plasma channel generated by the incident beam. The plasma channel, which has a relatively constant diameter over an extended distance, is generated by continual Kerr effect self-focusing balanced by ionization of air beam defocusing.
    Type: Grant
    Filed: November 10, 2004
    Date of Patent: December 4, 2007
    Assignee: Intel Corporation
    Inventors: Sergei L. Voronov, Christopher L. Rumer
  • Patent number: 7169687
    Abstract: A method is described for laser scribing or dicing portions of a workpiece using multi-source laser systems. In one embodiment, a first laser uses multiphoton absorption to lower the ablation threshold of portions of the workpiece prior to a second laser ablating the portions of the workpiece. In an alternative embodiment, a first laser uses high energy single-photon absorption to lower the ablation threshold of portions of the workpiece prior to a second laser ablating the portions of the workpiece.
    Type: Grant
    Filed: November 3, 2004
    Date of Patent: January 30, 2007
    Assignee: Intel Corporation
    Inventors: Eric J. Li, Sergei L. Voronov, Christopher L. Rumer