Patents by Inventor Sergey Frolov

Sergey Frolov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090221111
    Abstract: A method is provided for producing an electro-optic device having at least one optically transparent conducting layer with low electrical resistance. The method includes providing a composite substrate that includes an optically transparent and electrically insulating base substrate and an electrically conducting grid disposed in grooves located in the base substrate. Also provided is an electro-optical module having at least one transparent conducting layer. The composite substrate is attached onto the electro-optic module such that electrical contact is established between the grid and the transparent conducting layer of the electro-optic module.
    Type: Application
    Filed: February 28, 2008
    Publication date: September 3, 2009
    Applicant: Sunlight Photonics Inc.
    Inventors: Sergey Frolov, Michael Cyrus
  • Publication number: 20090218651
    Abstract: An electro-optic device includes at least one electro-optic module having first and second conductive layers and at least first and second semiconductor layers disposed between the conductive layers. At least one optically transparent, electrically insulating base substrate is disposed on the module. The base substrate has a plurality of grooves disposed therein and an electrically conducting material filling the grooves. Electrical contact is established between the conducting material and at least one of the conducting layers of the module.
    Type: Application
    Filed: February 28, 2008
    Publication date: September 3, 2009
    Applicant: Sunlight Photonics Inc.
    Inventors: Sergey Frolov, Michael Cyrus
  • Publication number: 20090211622
    Abstract: A laminate film includes a plurality of planar photovoltaic semi-transparent modules disposed one on top of another and laminated to each other. Each of the modules includes a substrate, first and second conductive layers and at least first and second semiconductor layers disposed between the conductive layers. The first and second semiconductor layers define a junction at an interface therebetween. At least one of the junctions is configured to convert a first spectral portion of optical energy into an electrical voltage and transmit a second spectral portion of optical energy to another of the junctions that is configured to convert at least a portion of the second spectral portion of optical energy into an electrical voltage.
    Type: Application
    Filed: February 21, 2008
    Publication date: August 27, 2009
    Applicant: Sunlight Photonics Inc.
    Inventors: Sergey Frolov, Michael Cyrus
  • Publication number: 20090215215
    Abstract: A method is provided for producing a hybrid multi-junction photovoltaic device. The method begins by providing a plurality of planar photovoltaic semi-transparent modules. Each of the modules is a fully functional, thin-film, photovoltaic device and includes first and second conductive layers and at least first and second semiconductor layers disposed between the conductive layers. The first and second semiconductor layers define a junction at an interface therebetween. The method continues by disposing the modules one on top of another and hybridly adhering them to each other. At least one of the modules is configured to convert a first spectral portion of optical energy into an electrical voltage and transmit a second spectral portion of optical energy to another of the junctions that is configured to convert at least part of the second spectral portion of optical energy into an electrical voltage.
    Type: Application
    Filed: February 21, 2008
    Publication date: August 27, 2009
    Applicant: Sunlight Photonics Inc.
    Inventors: Sergey Frolov, Michael Cyrus
  • Publication number: 20080216885
    Abstract: A method is provided for converting optical energy to electrical energy in a spectrally adaptive manner. The method begins by directing optical energy into a first photovoltaic module that includes non-single crystalline semiconductor layers defining a junction such that a first spectral portion of the optical energy is converted into a first quantity of electrical energy. A second spectral portion of the optical energy unabsorbed by the first module is absorbed by a second photovoltaic module that includes non-single crystalline semiconductor layers defining a junction and converted into a second quantity of electrical energy. The first quantity of electrical energy is conducted from the first module to a first external electrical circuit along a first path. The second quantity of electrical energy is conducted from the second module to a second external electrical circuit along a second path that is in parallel with the first path.
    Type: Application
    Filed: March 6, 2007
    Publication date: September 11, 2008
    Inventors: Sergey Frolov, Allan James Bruce, Joseph Shmulovich
  • Publication number: 20080069498
    Abstract: A planar waveguide circuit includes a silica-based planar optical waveguide circuit having a lower cladding, a core and an upper cladding. At least one input waveguide and one output waveguide are each coupled to the optical waveguide circuit. At least one tapered waveguide section is located in the waveguide circuit, which has an upper cladding segment that tapers down to at least the core to define a tapered recess. A filler material having a negative thermo-optic coefficient fills the tapered recess so that the optical waveguide circuit has an optical characteristic with a reduced temperature dependence.
    Type: Application
    Filed: September 18, 2006
    Publication date: March 20, 2008
    Inventor: Sergey Frolov
  • Patent number: 7027212
    Abstract: A planar waveguide optical amplifier includes a substrate and an active waveguide formed on the substrate for imparting gain to an optical signal propagating therethrough. The active waveguide has an input port for receiving an optical signal to be amplified and an output port on which an amplified optical signal is directed. A plurality of coupling elements are formed on the substrate and are adapted to couple pump power to the active waveguide. The plurality of coupling elements are located at predetermined positions along the active waveguide.
    Type: Grant
    Filed: April 6, 2004
    Date of Patent: April 11, 2006
    Assignee: Inplane Photonics, Inc.
    Inventors: Sergey Frolov, Joseph Shmulovich
  • Patent number: 6980576
    Abstract: An integrated optical device is provided for distributing optical pump energy. The device includes at least one input port for receiving optical energy, a plurality of output ports, and a user configurable optical network coupled to the input port for distributing the optical energy among the output ports in a prescribed manner in conformance with a user-selected configuration.
    Type: Grant
    Filed: February 7, 2003
    Date of Patent: December 27, 2005
    Assignee: Inplane Photonics, Inc.
    Inventors: Sergey Frolov, Joseph Shmulovich, Paul Francis Wysocki
  • Patent number: 6961502
    Abstract: An optical module is provided for performing a prescribed function such as dispersion compensation, for example. The optical module is to be integrated between stages of a multi-stage rare-earth doped optical amplifier. The module includes an input port for receiving optical energy from one stage of the rare-earth doped optical amplifier and a rare-earth doped planar waveguide coupled to the input port. An optically lossy, passive element is provided for performing the prescribed function. The optically lossy, passive element is coupled to the planar waveguide for receiving optical energy therefrom. An output port is coupled to the optically lossy, passive element for providing optical energy to another stage of the rare-earth doped optical amplifier.
    Type: Grant
    Filed: October 24, 2002
    Date of Patent: November 1, 2005
    Assignee: Inplane Photonics, Inc.
    Inventors: Paul Francis Wysocki, Sergey Frolov, Allan James Bruce, Joseph Shmulovich, Tek-Ming Shen
  • Patent number: 6920257
    Abstract: A planar lightwave circuit is provided that includes a substrate and at least one boundary positioned in the substrate and defining a cavity. The boundary is substantially non-transmissive and absorbing for wavelengths of stray light present in the vicinity of the boundary. The boundary possesses substantial symmetry under at least one symmetry group operation.
    Type: Grant
    Filed: March 24, 2003
    Date of Patent: July 19, 2005
    Assignee: Inplane Photonics, Inc.
    Inventors: Attila Mekis, Sergey Frolov
  • Patent number: 6915047
    Abstract: An optical tap is provided that includes an input waveguide having a first width for receiving an optical signal and a tap waveguide having a second width. The tap waveguide is coupled to the input waveguide in a junction region. An output waveguide, which has a third width, is coupled to the input waveguide in the junction region defined by the intersection of the input and tap waveguides. The input waveguide, tap waveguide and output waveguide respectively have input, tap and output longitudinal, centrally disposed optical axes. The input and tap axes define a first acute angle therebetween and the input and output axes define a second acute angle therebetween. A tapping ratio is defined by a ratio of optical output power from the tap waveguide to optical output power from the output waveguide. The tapping ratio is determined at least in part by the first, second and third widths and the first and second angles.
    Type: Grant
    Filed: March 24, 2003
    Date of Patent: July 5, 2005
    Assignee: Inplane Photonics, Inc.
    Inventors: Attila Mekis, Sergey Frolov
  • Patent number: 6882666
    Abstract: A semiconductor laser source includes a laser diode having front and rear facets. The laser diode includes a substrate and a lower cladding layer disposed on the substrate. The lower cladding layer is doped with a dopant of the first conductivity type. An active layer is disposed on the lower cladding layer and an upper cladding layer is disposed on the active layer. The upper cladding layer is doped with a dopant of the second conductivity type. At least one electrode is disposed on a first outer layer of the diode. A pair of electrodes is disposed on a second outer layer of the diode. The second outer layer is located on a side of the diode opposing the first outer layer. The pair of electrodes is configured to allow application of different currents to each one of the electrodes in the pair of electrodes. A reflector, which is located external to the laser diode, is in optical communication with the front facet of the laser diode for providing optical feedback to the active region.
    Type: Grant
    Filed: October 22, 2002
    Date of Patent: April 19, 2005
    Assignee: Inplane Photonics, Inc.
    Inventors: Rudolf Kazarinov, Sergey Frolov, Joseph Shmulovich
  • Patent number: 6865018
    Abstract: A multistage optical amplifier includes a fiber amplifier stage having an active optical fiber for imparting gain to an optical signal propagating therethrough and a coupler supplying pump energy to the optical fiber. A planar waveguide amplifier stage is optically coupled to the fiber amplifier stage. The waveguide amplifier including a substrate, an active planar waveguide formed on the substrate for imparting gain to an optical signal propagating therethrough, and at least one waveguide coupler formed on the substrate for coupling pump power to the active planar waveguide.
    Type: Grant
    Filed: October 25, 2002
    Date of Patent: March 8, 2005
    Assignee: Inplane Photonics, Inc.
    Inventors: Sergey Frolov, Joseph Shmulovich, Allan James Bruce, Tek-Ming Shen
  • Publication number: 20040257639
    Abstract: A planar waveguide optical amplifier includes a substrate and an active waveguide formed on the substrate for imparting gain to an optical signal propagating therethrough. The active waveguide has an input port for receiving an optical signal to be amplified and an output port on which an amplified optical signal is directed. A plurality of coupling elements are formed on the substrate and are adapted to couple pump power to the active waveguide. The plurality of coupling elements are located at predetermined positions along the active waveguide.
    Type: Application
    Filed: April 6, 2004
    Publication date: December 23, 2004
    Inventors: Sergey Frolov, Joseph Shmulovich
  • Publication number: 20040156096
    Abstract: An integrated optical device is provided for distributing optical pump energy. The device includes at least one input port for receiving optical energy, a plurality of output ports, and a user configurable optical network coupled to the input port for distributing the optical energy among the output ports in a prescribed manner in conformance with a user-selected configuration.
    Type: Application
    Filed: February 7, 2003
    Publication date: August 12, 2004
    Inventors: Sergey Frolov, Joseph Shmulovich, Paul Francis Wysocki
  • Publication number: 20040076208
    Abstract: A semiconductor laser source includes a laser diode having front and rear facets. The laser diode includes a substrate and a lower cladding layer disposed on the substrate. The lower cladding layer is doped with a dopant of the first conductivity type. An active layer is disposed on the lower cladding layer and an upper cladding layer is disposed on the active layer. The upper cladding layer is doped with a dopant of the second conductivity type. At least one electrode is disposed on a first outer layer of the diode. A pair of electrodes is disposed on a second outer layer of the diode. The second outer layer is located on a side of the diode opposing the first outer layer. The pair of electrodes is configured to allow application of different currents to each one of the electrodes in the pair of electrodes. A reflector, which is located external to the laser diode, is in optical communication with the front facet of the laser diode for providing optical feedback to the active region.
    Type: Application
    Filed: October 22, 2002
    Publication date: April 22, 2004
    Inventors: Rudolf Kazarinov, Sergey Frolov, Joseph Shmulovich
  • Publication number: 20030165007
    Abstract: A multistage optical amplifier includes a fiber amplifier stage having an active optical fiber for imparting gain to an optical signal propagating therethrough and a coupler supplying pump energy to the optical fiber. A planar waveguide amplifier stage is optically coupled to the fiber amplifier stage. The waveguide amplifier including a substrate, an active planar waveguide formed on the substrate for imparting gain to an optical signal propagating therethrough, and at least one waveguide coupler formed on the substrate for coupling pump power to the active planar waveguide.
    Type: Application
    Filed: October 25, 2002
    Publication date: September 4, 2003
    Inventors: Sergey Frolov, Joseph Shmulovich, Allan James Bruce, Tek-Ming Shen
  • Publication number: 20030142388
    Abstract: A planar waveguide optical amplifier includes a substrate and an active waveguide formed on the substrate for imparting gain to an optical signal propagating therethrough. The active waveguide has an input port for receiving an optical signal to be amplified and an output port on which an amplified optical signal is directed. A plurality of coupling elements are formed on the substrate and are adapted to couple pump power to the active waveguide. The plurality of coupling elements are located at predetermined positions along the active waveguide.
    Type: Application
    Filed: January 31, 2002
    Publication date: July 31, 2003
    Inventors: Sergey Frolov, Joseph Shmulovich
  • Publication number: 20030086638
    Abstract: In accordance with the present invention, an optical device is provided that includes an N×N network, where N is an integer greater than or equal to 2. The network has N input ports for receiving optical input energy and N output ports for providing optical output energy. The optical output energy at each of the output ports arises from interference among the optical input energy received at the input ports. (N−1) feedback paths optically couple (N−1) of the input ports of the N×N network to (N−1) of the output ports of the N×N network. A first optical waveguide, which is provided for receiving an input optical signal, is coupled to a remaining one of the input ports of the N×N network. A second optical waveguide, which is provided for the exit of an output optical signal, is coupled to a remaining one of the output ports of the N×N network.
    Type: Application
    Filed: November 2, 2001
    Publication date: May 8, 2003
    Applicant: Inplane Photonics, Inc.
    Inventors: Sergey Frolov, Joseph Shmulovich, Tek-Ming Shen
  • Patent number: 6501874
    Abstract: An apparatus is provided to compensate for dispersion in a transmission medium. The apparatus includes an input port for receiving a WDM optical signal having a plurality of signal wavelengths and a first Bragg transmission grating receiving the WDM optical signal from the input port. The first Bragg transmission grating has non-zero dispersion at at least one of the signal wavelengths. The first Bragg transmission grating also has a Bragg wavelength that is chosen so that all of the plurality of signal wavelengths lie outside of a reflection band of the first Bragg transmission grating. A second Bragg transmission grating, which is optically coupled to the first Bragg transmission grating, has a non-zero dispersion at at least one of the signal wavelengths. The second Bragg transmission grating also has a Bragg wavelength that is selected so that all of the plurality of signal wavelengths lie outside of a reflection band of the second Bragg transmission grating.
    Type: Grant
    Filed: September 25, 2001
    Date of Patent: December 31, 2002
    Assignee: Inplane Photonics, Inc.
    Inventors: Sergey Frolov, Joseph Shmulovich, Tek-Ming Shen