Patents by Inventor Sergio S. Frutuoso

Sergio S. Frutuoso has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11880904
    Abstract: A method for robotic inspection of a part, includes the steps of: supporting the part with a robot mechanism; obtaining part-related sensor input with a sensor positioned to inspect the part supported by the robot mechanism; and controlling movement of the robot mechanism relative to the sensor, wherein the controlling is done by a feedback control unit which receives the sensor input, and the feedback control unit is configured to control the robot mechanism based upon the sensor input.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: January 23, 2024
    Assignee: RTX Corporation
    Inventors: Alan Matthew Finn, Jose Miguel Pasini, Richard W. Osborne, III, Edgar A. Bernal, Ozgur Erdinc, Olusegun Oshin, Ziyou Xiong, Catalin G. Fotache, Gene B. Donskoy, Sergio S. Frutuoso, Joseph A. Sylvestro
  • Patent number: 11410298
    Abstract: A process for automated component inspection includes the steps of calibrating an imaging device mounted on a table; calibrating a coordinate measuring machine mounted on the table, the coordinate measuring machine comprising a fixture coupled to an arm of the coordinate measuring machine; coupling a component to the fixture; acquiring an image of said component with said imaging device; registering a baseline dimensioned image to the component image; applying the baseline dimensioned image to a damage detection algorithm; and determining component damage by the damage detection algorithm.
    Type: Grant
    Filed: December 5, 2018
    Date of Patent: August 9, 2022
    Assignee: Raytheon Technologies Corporation
    Inventors: Alan Matthew Finn, Jose Miguel Pasini, Edgar A. Bernal, Ozgur Erdinc, Ziyou Xiong, Gene B. Donskoy, Sergio S. Frutuoso, Joseph A. Sylvestro, Richard W. Osborne, III, Olusegun T. Oshin, William L. Rall
  • Publication number: 20210192670
    Abstract: A method for robotic inspection of a part, includes the steps of: supporting the part with a robot mechanism; obtaining part-related sensor input with a sensor positioned to inspect the part supported by the robot mechanism; and controlling movement of the robot mechanism relative to the sensor, wherein the controlling is done by a feedback control unit which receives the sensor input, and the feedback control unit is configured to control the robot mechanism based upon the sensor input.
    Type: Application
    Filed: March 8, 2021
    Publication date: June 24, 2021
    Applicant: Raytheon Technologies Corporation
    Inventors: Alan Matthew Finn, Jose Miguel Pasini, Richard W. Osborne, III, Edgar A. Bernal, Ozgur Erdinc, Olusegun T. Oshin, Ziyou Xiong, Catalin G. Fotache, Gene B. Donskoy, Sergio S. Frutuoso, Joseph A. Sylvestro
  • Patent number: 10943320
    Abstract: A method for robotic inspection of a part, includes the steps of: supporting the part with a robot mechanism; obtaining part-related sensor input with a sensor positioned to inspect the part supported by the robot mechanism; and controlling movement of the robot mechanism relative to the sensor, wherein the controlling is done by a feedback control unit which receives the sensor input, and the feedback control unit is configured to control the robot mechanism based upon the sensor input.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: March 9, 2021
    Assignee: Raytheon Technologies Corporation
    Inventors: Alan Matthew Finn, Jose Miguel Pasini, Richard W. Osborne, III, Edgar A. Bernal, Ozgur Erdinc, Olusegun Oshin, Ziyou Xiong, Catalin G. Fotache, Gene B. Donskoy, Sergio S. Frutuoso, Joseph A. Sylvestro
  • Publication number: 20190340721
    Abstract: A method for robotic inspection of a part, includes the steps of: supporting the part with a robot mechanism; obtaining part-related sensor input with a sensor positioned to inspect the part supported by the robot mechanism; and controlling movement of the robot mechanism relative to the sensor, wherein the controlling is done by a feedback control unit which receives the sensor input, and the feedback control unit is configured to control the robot mechanism based upon the sensor input.
    Type: Application
    Filed: May 4, 2018
    Publication date: November 7, 2019
    Applicant: United Technologies Corporation
    Inventors: Alan Matthew Finn, Jose Miguel Pasini, Richard W. Osborne, III, Edgar A. Bernal, Ozgur Erdinc, Olusegun Oshin, Ziyou Xiong, Catalin G. Fotache, Gene B. Donskoy, Sergio S. Frutuoso, Joseph A. Sylvestro
  • Publication number: 20190172191
    Abstract: A process for automated component inspection includes the steps of calibrating an imaging device mounted on a table; calibrating a coordinate measuring machine mounted on the table, the coordinate measuring machine comprising a fixture coupled to an arm of the coordinate measuring machine; coupling a component to the fixture; acquiring an image of said component with said imaging device; registering a baseline dimensioned image to the component image; applying the baseline dimensioned image to a damage detection algorithm; and determining component damage by the damage detection algorithm.
    Type: Application
    Filed: December 5, 2018
    Publication date: June 6, 2019
    Inventors: Alan Matthew Finn, Jose Miguel Pasini, Edgar A. Bernal, Ozgur Erdinc, Ziyou Xiong, Gene B. Donskoy, Sergio S. Frutuoso, Joseph A. Sylvestro, Richard W. Osborne, III, Olusegun T. Oshin, William L. Rall
  • Patent number: 10054552
    Abstract: An example method of inspecting a part includes applying a penetrant dye to the part, the penetrant dye exhibiting a fluorescent color when subjected to light from a lighting device. A portion of the part is illuminated with light from the lighting device. An image of the portion of the part is automatically recorded with a camera while the portion is illuminated. An uncertainty metric for the image is automatically determined that is indicative of a likelihood that pixels in the image having the fluorescent color represent damage to the part. At least one of the part, lighting device, and camera are automatically adjusted based on the uncertainty metric being within a predefined range. The automatic recording, determining, and adjusting steps are iteratively repeated until the uncertainty metric is greater than the predefined range, or a predefined number of iterations have been performed for the portion of the part.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: August 21, 2018
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Sergio S. Frutuoso, Alan Matthew Finn, Gene B. Donskoy