Patents by Inventor Serik Eliby

Serik Eliby has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160145632
    Abstract: A process of producing transgenic plants or plant cells stably transformed on a chromosome with a DNA sequence of interest and capable of expressing a function of interest from said DNA sequence of interest, said process comprising (a) providing plant cells or plants with at least two different vectors, whereby (i) said at least two different vectors are adapted to recombine with each other by site-specific recombination in said plant cells for producing a non-replicating recombination product containing said DNA sequence of interest, (ii) said at least two different vectors are adapted for integrating said DNA sequence of interest into said chromosome, (iii) said DNA sequence of interest contains sequence portions from at least two of said at least two different vectors, said sequence portions being necessary for expressing said function of interest from said DNA sequence of interest; and (b) selecting plants or plant cells expressing said function of interest
    Type: Application
    Filed: November 24, 2015
    Publication date: May 26, 2016
    Inventors: Anatoly Giritch, Serik Eliby, Sylvestre Marillonnet, Victor Klimyuk, Yuri Gleba
  • Patent number: 9228192
    Abstract: A process of producing transgenic plants or plant cells stably transformed on a chromosome with a DNA sequence of interest capable of expressing a function of interest, said process comprising (a) providing plant cells or plants with at least two different vectors that are adapted to recombine with each other between site-specific recombination sites compatible with a site-specific recombinase that is also provided in order to produce a non-replicating recombination product containing said DNA sequence of interest, (ii) said at least two different vectors are adapted for integrating said DNA sequence of interest into said chromosome, (iii) said DNA sequence of interest contains sequence portions from at least two of said at least two different vectors, said sequence portions being necessary for expressing said function of interest from said DNA sequence of interest; and (b) selecting plants or plant cells expressing said function of interest.
    Type: Grant
    Filed: January 30, 2004
    Date of Patent: January 5, 2016
    Assignee: BAYER CROPSCIENCE N.V.
    Inventors: Anatoly Giritch, Serik Eliby, Sylvestre Marillonnet, Victor Klimyuk, Yuri Gleba
  • Patent number: 8604281
    Abstract: A process of producing transgenic multi-cellular plants or parts thereof expressing a trait of interest that has a controlled distribution of said trait to progeny, comprising (i) producing a first plant or a cell thereof having in a first locus of a nuclear chromosome a first heterologous nucleotide sequence comprising a first fragment of a nucleotide sequence encoding said trait of interest, (ii) producing a second plant or a cell thereof having in a second locus of a nuclear chromosome homologous to said nuclear chromosome of step (i), a second heterologous nucleotide sequence comprising a second fragment of the nucleotide sequence encoding said trait of interest, and (iii) hybridising said first and said second plants or cells thereof to generate progeny exhibiting said functional trait of interest. Also disclosed is a process of producing hybrid seeds for agriculture.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: December 10, 2013
    Assignee: Bayer CropScience NV
    Inventors: Stefan Werner, Anatoly Giritch, Serik Eliby, Sylvestre Marillonnet, Victor Klimyuk, Yuri Gleba
  • Publication number: 20130024986
    Abstract: A process of producing transgenic multi-cellular plants or parts thereof expressing a trait of interest that has a controlled distribution of said trait to progeny, comprising (i) producing a first plant or a cell thereof having in a first locus of a nuclear chromosome a first heterologous nucleotide sequence comprising a first fragment of a nucleotide sequence encoding said trait of interest, (ii) producing a second plant or a cell thereof having in a second locus of a nuclear chromosome homologous to said nuclear chromosome of step (i), a second heterologous nucleotide sequence comprising a second fragment of the nucleotide sequence encoding said trait of interest, and (iii) hybridising said first and said second plants or cells thereof to generate progeny exhibiting said functional trait of interest. Also disclosed is a process of producing hybrid seeds for agriculture.
    Type: Application
    Filed: May 14, 2012
    Publication date: January 24, 2013
    Applicant: ICON GENETICS GMBH
    Inventors: Stefan Werner, Anatoly Giritch, Serik Eliby, Sylvestre Marillonnet, Victor Klimyuk, Yuri Gleba
  • Patent number: 8193410
    Abstract: A process of producing a transgenic multi-cellular plants or parts thereof expressing a trait of interest, said trait having a controlled distribution of said trait to progeny, wherein said process comprises (i) producing a first plant or a cell thereof having in a first locus of a nuclear chromosome a first heterologous nucleotide sequence comprising a first fragment of a nucleotide sequence encoding said trait of interest, (ii) producing a second plant or a cell thereof having in a second locus of a nuclear chromosome homologous to said nuclear chromosome of step (i), a second heterologous nucleotide sequence comprising a second fragment of the nucleotide sequence encoding said trait of interest, and (iii) hybridising said first and said second plant or cells thereof to generate progeny exhibiting said functional trait of interest due to binding between a protein or polypeptide encoded by said first heterologous nucleotide sequence and a protein or polypeptide encoded by said second heterologous nucleotide
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: June 5, 2012
    Assignee: Icon Genetics GmbH
    Inventors: Stefan Werner, Anatoly Giritch, Serik Eliby, Sylvestre Marillonnet, Victor Klimyuk, Yuri Gleba
  • Publication number: 20100138948
    Abstract: A process of producing a transgenic multi-cellular plants or parts thereof expressing a trait of interest, said trait having a controlled distribution of said trait to progeny, wherein said process comprises (i) producing a first plant or a cell thereof having in a first locus of a nuclear chromosome a first heterologous nucleotide sequence comprising a first fragment of a nucleotide sequence encoding said trait of interest, (ii) producing a second plant or a cell thereof having in a second locus of a nuclear chromosome homologous to said nuclear chromosome of step (i), a second heterologous nucleotide sequence comprising a second fragment of the nucleotide sequence encoding said trait of interest, and (iii) hybridising said first and said second plant or cells thereof to generate progeny exhibiting said functional trait of interest due to binding between a protein or polypeptide encoded by said first heterologous nucleotide sequence and a protein or polypeptide encoded by said second heterologous nucleotide
    Type: Application
    Filed: November 19, 2009
    Publication date: June 3, 2010
    Applicant: Icon Genetics GmbH
    Inventors: Stefan Werner, Anatoly Giritch, Serik Eliby, Sylvestre Marillonnet, Victor Klimyuk, Yuri Gleba
  • Patent number: 7718848
    Abstract: A process of the production of a product of interest in an F1 seed obtained by a hybridization of a first and a second transgenic parental plant, said hybridization generating a genetic endowment in said F1 seed for said production by combining in said F1 seed first and second partial genetic endowments of said first and second transgenic parental plants, followed by isolating said product of interest from said F1 seed or a seedling thereof.
    Type: Grant
    Filed: June 4, 2004
    Date of Patent: May 18, 2010
    Assignee: Icon Genetics GmbH
    Inventors: Stefan Werner, Romy Kandzia, Serik Eliby, Sylvestre Marillonnet, Victor Klimyuk, Yuri Gleba
  • Patent number: 7652194
    Abstract: This invention describes a process for gene expression in plants utilizing translational vectors. Said translational vectors cause a gene of interest to be stably integrated into a transcriptionally active host genomic DNA such that the transcription of the gene of interest is controlled by a promoter of the host plant. Said translational vectors are preferably based on internal ribosome entry site (IRES) elements that are of plant origin.
    Type: Grant
    Filed: December 7, 2001
    Date of Patent: January 26, 2010
    Assignee: Icon Genetics GmbH
    Inventors: Yuri Gleba, Victor Klimyuk, Gregor Benning, Serik Eliby
  • Patent number: 7642404
    Abstract: A process of producing a transgenic multi-cellular plants or parts thereof expressing a trait of interest, said trait having a controlled distribution of said trait to progeny, wherein said process comprises (i) producing a first plant or a cell thereof having in a first locus of a nuclear chromosome a first heterologous nucleotide sequence comprising a first fragment of a nucleotide sequence encoding said trait of interest, (ii) producing a second plant or a cell thereof having in a second locus of a nuclear chromosome homologous to said nuclear chromosome of step (i), a second heterologous nucleotide sequence comprising a second fragment of the nucleotide sequence encoding said trait of interest, and (iii) hybridising said first and said second plant or cells thereof to generate progeny exhibiting said functional trait of interest due to binding between a protein or polypeptide encoded by said first heterologous nucleotide sequence and a protein or polypeptide encoded by said second heterologous nucleotide
    Type: Grant
    Filed: March 21, 2003
    Date of Patent: January 5, 2010
    Assignee: ICON Genetics GmbH
    Inventors: Stefan Werner, Anatoly Giritch, Serik Eliby, Sylvestre Marillonnet, Victor Klimyuk, Yuri Gleba
  • Publication number: 20090265814
    Abstract: A process of producing transgenic plants or plant cells stably transformed on a chromosome with a DNA sequence of interest and capable of expressing a function of interest from said DNA sequence of interest, said process comprising (a) providing plant cells or plants with at least two different vectors, whereby (i) said at least two different vectors are adapted to recombine with each other by site-specific recombination in said plant cells for producing a non-replicating recombination product containing said DNA sequence of interest, (ii) said at least two different vectors are adapted for integrating said DNA sequence of interest into said chromosome, (iii) said DNA sequence of interest contains sequence portions from at least two of said at least two different vectors, said sequence portions being necessary for expressing said function of interest from said DNA sequence of interest; and (b) selecting plants or plant cells expressing said function of interest.
    Type: Application
    Filed: January 30, 2004
    Publication date: October 22, 2009
    Applicant: Icon Genetics AG
    Inventors: Anatoly Giritch, Serik Eliby, Sylvestre Marillonnet, Victor Klimyuk, Yuri Gleba
  • Publication number: 20060272051
    Abstract: A process of the production of a product of interest in an F1 seed obtained by a hybridization of a first and a second transgenic parental plant, said hybridization generating a genetic endowment in said F1 seed for said production by combining in said F1 seed first and second partial genetic endowments of said first and second transgenic parental plants, followed by isolating said product of interest from said F1 seed or a seedling thereof.
    Type: Application
    Filed: June 4, 2004
    Publication date: November 30, 2006
    Applicant: Icon Genetics AG
    Inventors: Stefan Werner, Romy Kandzia, Serik Eliby, Sylvestre Marillonnet, Victor Klimyuk, Yuri Gleba
  • Publication number: 20050172353
    Abstract: A process of producing a transgenic multi-cellular plants or parts thereof expressing a trait of interest, said trait having a controlled distribution of said trait to progeny, wherein said process comprises (i) producing a first plant or a cell thereof having in a first locus of a nuclear chromosome a first heterologous nucleotide sequence comprising a first fragment of a nucleotide sequence encoding said trait of interest, (ii) producing a second plant or a cell thereof having in a second locus of a nuclearchomosome homologous to said nuclear chromosome of step (i), a second heterologous nucleotide sequence comprising a second fragment of the nucleotide sequence encoding said trait of interest, and (iii) hybridising said first and said second plant or cells thereof to generate progeny exhibiting said functional trait of interest due to binding between a protein or polypeptide encoded by said first heterologous nucleotide sequence and a protein or polypeptide encoded by said second heterologous nucleotide se
    Type: Application
    Filed: March 21, 2003
    Publication date: August 4, 2005
    Inventors: Stefan Werner, Anatoly Giritch, Serik Eliby, Sylvestre Marillonnet, Victor Klimyuk, Yuri Gleba
  • Publication number: 20040244073
    Abstract: Disclosed is a method of constructing a wild-species genomic library of chromosome fragments incorporated in a crop-species genome. First, a number of transformants for donor and recipient plant species is produced, carrying the DNA constructs necessary for the exchange of chromosomal fragments mediated by site-specific recombination. The donor and recipient are chosen such that, upon sexual cross or somatic cell fusion, they produce unstable progeny or demonstrate preferential segregation or sorting out. Second, the crossing between donor and recipient species and formation of chromosomal recombinants of donor and recipient plant species is induced. Third, taking advantage of the instability of hybrids between donor and recipient, recombinant cells and plants of the recipient are selected which contain specific chromosome fragments of the donor species. Also disclosed are transgenic plants, libraries and breeding material produced by the methods.
    Type: Application
    Filed: June 29, 2004
    Publication date: December 2, 2004
    Inventors: Victor Klimyuk, Serik Eliby, Sylvestre Marillonnet, Newell Bascomb, Yuri Gleba
  • Publication number: 20040221330
    Abstract: A process for producing transgenic plants or plant cells capable of expressing a coding sequence of interest under transcriptional and translational control of host nuclear transcriptional and translational elements is described by introducing into the nuclear genome of host plants or plant cells a vector comprising said coding sequence of interest which is devoid of (a) an upstream element of initiation of transcription functional in the host plants or plant cells and operably linked to said coding sequence of interest and required for its transcription; (b) an upstream element of initiation of translation functional in the host plants or plant cells and operably linked to said coding sequence of interest; and subsequently selecting plant cells or plants expressing said coding sequence of interest.
    Type: Application
    Filed: May 24, 2004
    Publication date: November 4, 2004
    Inventors: Victor Klimyuk, Gregor Benning, Serik Eliby, Yuri Gleba
  • Publication number: 20040088764
    Abstract: This invention describes a process for gene expression in plants utilizing translational vectors. Said translational vectors cause a gene of interest to be stably integrated into a transriptionally active host genomic DNA such that the transcription the gene of interest is controlled by a promoter of the host organism. Said translational vectors are preferably based on internal ribosome entry site (IRES) elements that are of plant origin, plant viral origin, synthetic origin or are isolated from other organisms.
    Type: Application
    Filed: December 24, 2003
    Publication date: May 6, 2004
    Inventors: Yuri Gleba, Victor Klimyuk, Gregor Benning, Serik Eliby