Patents by Inventor Seth Cocking

Seth Cocking has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240017002
    Abstract: A method of pumping a fluid including providing a pump including a disposable component and a reusable component; connecting the disposable component and the reusable component; receiving a fluid medium from a fluid medium source into a first disposable conduit; drawing the fluid medium into a disposable piston pump assembly of a first disposable conduit; flowing the fluid medium through a disposable flow meter; measuring a flow rate of the fluid medium; discharging the fluid medium into a reusable bubble detector; and discharging the fluid medium from the reusable bubble detector if less than a preselected amount of gas is detected.
    Type: Application
    Filed: September 25, 2023
    Publication date: January 18, 2024
    Inventors: Jesse Pedroni, Jibi Varughese, Grayson Ridge, Graham Weeks, Alex Moreland, Jonathan Presley, Jonathan A. Reeh, Tiffany Jefferson, Seth Berry, Seth Cocking, Justin McIntire, Jady Stevens, Chris Hadley, John Zbranek, Rebecca Berger, Kacey G. Ortiz, Geoffrey Duncan Hitchens, Ashwin Balasubramanian
  • Patent number: 11779699
    Abstract: A pump including a disposable component including a disposable component inlet port coupled to a first disposable conduit in fluid communication with a fluid medium source, wherein the first disposable conduit includes a disposable piston pump assembly and a disposable bubble eliminator, and the first disposable conduit is in fluid communication with a disposable component outlet port, wherein the disposable bubble eliminator is in fluid communication with a lumen of the first disposable conduit and is operable to reduce a gas content of a fluid medium; wherein the disposable piston pump assembly is operable to pump the fluid medium from the disposable component inlet port, through the first disposable conduit and the disposable bubble eliminator, to the disposable component outlet port; and a reusable component including a reusable movable stage operable to compress the disposable piston pump assembly; and a reusable mechanical actuator operable to drive the movable stage.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: October 10, 2023
    Assignee: LYNNTECH, INC.
    Inventors: Jesse Pedroni, Jibi Varughese, Grayson Ridge, Graham Weeks, Alex Moreland, Jonathan Presley, Jonathan A. Reeh, Tiffany Jefferson, Seth Berry, Seth Cocking, Justin McIntire, Jady Stevens, Chris Hadley, John Zbranek, Rebecca Berger, Kacey G. Ortiz, Geoffrey Duncan Hitchens, Ashwin Balasubramanian
  • Publication number: 20220193329
    Abstract: A pump including a disposable component including a disposable component inlet port coupled to a first disposable conduit in fluid communication with a fluid medium source, wherein the first disposable conduit includes a disposable piston pump assembly and a disposable bubble eliminator, and the first disposable conduit is in fluid communication with a disposable component outlet port, wherein the disposable bubble eliminator is in fluid communication with a lumen of the first disposable conduit and is operable to reduce a gas content of a fluid medium; wherein the disposable piston pump assembly is operable to pump the fluid medium from the disposable component inlet port, through the first disposable conduit and the disposable bubble eliminator, to the disposable component outlet port; and a reusable component including a reusable movable stage operable to compress the disposable piston pump assembly; and a reusable mechanical actuator operable to drive the movable stage.
    Type: Application
    Filed: September 3, 2020
    Publication date: June 23, 2022
    Inventors: Jesse Pedroni, Jibi Varughese, Grayson Ridge, Graham Weeks, Alex Moreland, Jonathan Presley, Jonathan A. Reeh, Tiffany Jefferson, Seth Berry, Seth Cocking, Justin McIntire, Jady Stevens, Chris Hadley, John Zbranek, Rebecca Berger, Kacey G. Ortiz, Geoffrey Duncan Hitchens, Ashwin Balasubramanian
  • Publication number: 20220080111
    Abstract: A pump including a disposable component including a disposable component inlet port coupled to a first disposable conduit in fluid communication with a fluid medium source, wherein the first disposable conduit includes a disposable piston pump assembly and a disposable bubble eliminator, and the first disposable conduit is in fluid communication with a disposable component outlet port, wherein the disposable bubble eliminator is in fluid communication with a lumen of the first disposable conduit and is operable to reduce a gas content of a fluid medium; wherein the disposable piston pump assembly is operable to pump the fluid medium from the disposable component inlet port, through the first disposable conduit and the disposable bubble eliminator, to the disposable component outlet port; and a reusable component including a reusable movable stage operable to compress the disposable piston pump assembly; and a reusable mechanical actuator operable to drive the movable stage.
    Type: Application
    Filed: September 3, 2020
    Publication date: March 17, 2022
    Inventors: Jesse Pedroni, Jibi Varughese, Grayson Ridge, Graham Weeks, Alex Moreland, Jonathan Presley, Jonathan A. Reeh, Tiffany Jefferson, Seth Berry, Seth Cocking, Justin McIntire, Jady Stevens, Chris Hadley, John Zbranek, Rebecca Berger, Kacey G. Ortiz, Geoffrey Duncan Hitchens, Ashwin Balasubramanian
  • Publication number: 20210353896
    Abstract: The present invention includes a device for hypoxia training comprising: one or more electrochemical cells each comprising: a cathode and an anode separated by a proton exchange membrane, each of the anode and cathode in communication with an input and an output, wherein the input of the cathode is in fluid communication with ambient air, and wherein the input of the anode is in fluid communication with a source of liquid water; a power supply connected to the one or more electrochemical cells; and a mask in fluid communication with the output from the cathode of the one or more electrochemical cells, wherein oxygen is removed from the ambient air during contact with the cathode when hydrogen ions separated from liquid water by a catalyst on the anode convert oxygen in the ambient air into water.
    Type: Application
    Filed: June 21, 2021
    Publication date: November 18, 2021
    Inventors: Jonathan Reeh, Mahesh Waje, Mehmet Kesmez, Carlos Salinas, Jibi Varughese, John Zbranek, Seth Cocking, Ashwin Balasubramanian, Cory Teurman, James Netherland, Geoffrey Duncan Hitchens
  • Publication number: 20210252246
    Abstract: The present invention includes a device for hypoxia training including a breathable gas source; a mask in fluid communication with the breathable gas source; a mask-state detector that uses one or more criteria to determine if the mask is being worn by a subject, wherein the mask-state detector is capable of communicating an indication of a mask-off state or a mask-on state; a flowmeter in fluid communication with the mask and coupled to the mask-state detector; and a pressure regulator in fluid communication with the mask and with the breathable gas source, and coupled to the mask-state detector, wherein the pressure regulator sets a first pressure at the mask when the mask-state detector communicates an indication of a mask-off state or a second pressure at the mask when the mask-state detector communicates an indication of a mask-on state.
    Type: Application
    Filed: April 16, 2021
    Publication date: August 19, 2021
    Inventors: Jonathan Reeh, Mahesh Waje, Mehmet Kesmez, Carlos Salinas, Jibi Varughese, John Zbranek, Seth Cocking, Ashwin Balasubramanian, Cory Teurman, James Netherland, Geoffrey Duncan Hitchens
  • Patent number: 11071840
    Abstract: The present invention includes a device for hypoxia training comprising: one or more electrochemical cells each comprising: a cathode and an anode separated by a proton exchange membrane, each of the anode and cathode in communication with an input and an output, wherein the input of the cathode is in fluid communication with ambient air, and wherein the input of the anode is in fluid communication with a source of liquid water; a power supply connected to the one or more electrochemical cells; and a mask in fluid communication with the output from the cathode of the one or more electrochemical cells, wherein oxygen is removed from the ambient air during contact with the cathode when hydrogen ions separated from liquid water by a catalyst on the anode convert oxygen in the ambient air into water.
    Type: Grant
    Filed: May 2, 2017
    Date of Patent: July 27, 2021
    Assignee: Lynntech, Inc.
    Inventors: Jonathan Reeh, Mahesh Waje, Mehmet Kesmez, Carlos Salinas, Jibi Varughese, John Zbranek, Seth Cocking, Ashwin Balasubramanian, Cory Teurman, James Netherland, Geoffrey Duncan Hitchens
  • Patent number: 11007339
    Abstract: The present invention includes a device for hypoxia training including a breathable gas source; a mask in fluid communication with the breathable gas source; a mask-state detector that uses one or more criteria to determine if the mask is being worn by a subject, wherein the mask-state detector is capable of communicating an indication of a mask-off state or a mask-on state; a flowmeter in fluid communication with the mask and coupled to the mask-state detector; and a pressure regulator in fluid communication with the mask and with the breathable gas source, and coupled to the mask-state detector, wherein the pressure regulator sets a first pressure at the mask when the mask-state detector communicates an indication of a mask-off state or a second pressure at the mask when the mask-state detector communicates an indication of a mask-on state.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: May 18, 2021
    Assignee: Lynntech, Inc.
    Inventors: Jonathan Reeh, Mahesh Waje, Mehmet Kesmez, Carlos Salinas, Jibi Varughese, John Zbranek, Seth Cocking, Ashwin Balasubramanian, Cory Teurman, James Netherland, Geoffrey Duncan Hitchens
  • Publication number: 20210060237
    Abstract: A pump including a disposable component including a disposable component inlet port coupled to a first disposable conduit in fluid communication with a fluid medium source, wherein the first disposable conduit includes a disposable piston pump assembly and a disposable bubble eliminator, and the first disposable conduit is in fluid communication with a disposable component outlet port, wherein the disposable bubble eliminator is in fluid communication with a lumen of the first disposable conduit and is operable to reduce a gas content of a fluid medium; wherein the disposable piston pump assembly is operable to pump the fluid medium from the disposable component inlet port, through the first disposable conduit and the disposable bubble eliminator, to the disposable component outlet port; and a reusable component including a reusable movable stage operable to compress the disposable piston pump assembly; and a reusable mechanical actuator operable to drive the movable stage.
    Type: Application
    Filed: September 3, 2020
    Publication date: March 4, 2021
    Inventors: Jesse Pedroni, Jibi Varughese, Grayson Ridge, Graham Weeks, Alex Moreland, Jonathan Presley, Jonathan A. Reeh, Tiffany Jefferson, Seth Berry, Seth Cocking, Justin McIntire, Jady Stevens, Chris Hadley, John Zbranek, Rebecca Berger, Kacey G. Ortiz, Geoffrey Duncan Hitchens, Ashwin Balasubramanian
  • Patent number: 10913073
    Abstract: The present invention includes a device, a system, and a method for enhancing a particle separation efficiency, including a particle charging device adapted to impart predominately unipolar charging on a plurality of particles in a fluid stream, e.g. a gas stream; wherein the particle charging device is positioned upstream from and adapted to provide the plurality of particles charged by the particle charging device to a particle deflection device capable of separating the particles charged by the particle charging device from a core fluid flow that is substantially free of dust particles.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: February 9, 2021
    Assignee: Lynntech, Inc.
    Inventors: Sanil John, Dennis R. Gifford, Seth Cocking, Jady Samuel Stevens, Michael William Martin, Geoffrey Duncan Hitchens, David Battaglia
  • Publication number: 20180296877
    Abstract: The present invention includes a device for hypoxia training including a breathable gas source; a mask in fluid communication with the breathable gas source; a mask-state detector that uses one or more criteria to determine if the mask is being worn by a subject, wherein the mask-state detector is capable of communicating an indication of a mask-off state or a mask-on state; a flowmeter in fluid communication with the mask and coupled to the mask-state detector; and a pressure regulator in fluid communication with the mask and with the breathable gas source, and coupled to the mask-state detector, wherein the pressure regulator sets a first pressure at the mask when the mask-state detector communicates an indication of a mask-off state or a second pressure at the mask when the mask-state detector communicates an indication of a mask-on state.
    Type: Application
    Filed: May 9, 2018
    Publication date: October 18, 2018
    Inventors: Jonathan Reeh, Mahesh Waje, Mehmet Kesmez, Carlos Salinas, Jibi Varughese, John Zbranek, Seth Cocking, Ashwin Balasubramanian, Cory Teurman, James Netherland, Geoffrey Duncan Hitchens
  • Publication number: 20180193848
    Abstract: The present invention includes a device, a system, and a method for enhancing a particle separation efficiency, including a particle charging device adapted to impart predominately unipolar charging on a plurality of particles in a fluid stream, e.g. a gas stream; wherein the particle charging device is positioned upstream from and adapted to provide the plurality of particles charged by the particle charging device to a particle deflection device capable of separating the particles charged by the particle charging device from a core fluid flow that is substantially free of dust particles.
    Type: Application
    Filed: January 9, 2018
    Publication date: July 12, 2018
    Inventors: Sanil John, Dennis R. Gifford, Seth Cocking, Jady Samuel Stevens, Michael William Martin, Geoffrey Duncan Hitchens, David Battaglia
  • Publication number: 20170326327
    Abstract: The present invention includes a device for hypoxia training comprising: one or more electrochemical cells each comprising: a cathode and an anode separated by a proton exchange membrane, each of the anode and cathode in communication with an input and an output, wherein the input of the cathode is in fluid communication with ambient air, and wherein the input of the anode is in fluid communication with a source of liquid water; a power supply connected to the one or more electrochemical cells; and a mask in fluid communication with the output from the cathode of the one or more electrochemical cells, wherein oxygen is removed from the ambient air during contact with the cathode when hydrogen ions separated from liquid water by a catalyst on the anode convert oxygen in the ambient air into water.
    Type: Application
    Filed: May 2, 2017
    Publication date: November 16, 2017
    Inventors: Jonathan Reeh, Mahesh Waje, Mehmet Kesmez, Carlos Salinas, Jibi Varughese, John Zbranek, Seth Cocking, Ashwin Balasubramanian, Cory Teurman, James Netherland
  • Publication number: 20070252998
    Abstract: An apparatus to interrogate one or more fiber optic sensors to make high-resolution measurements at long distances between the sensor and the interrogator apparatus. The apparatus comprises a tunable light source, an optical switch for pulsing the light source, at least one sensor (e.g., a Fabry-Perot sensor) for reflecting the laser light, a fiber optic cable interconnecting the sensor with the light source, a coupler for directing the reflected light from the sensor to a detector in order to generate a digital output, and a control logic for tuning the laser light source based on the digital output from the detector. Use of a fiber Bragg grating temperature sensor is also contemplated.
    Type: Application
    Filed: March 21, 2007
    Publication date: November 1, 2007
    Inventors: John Berthold, Seth Cocking, Wincenty Kaminski, Larry Jeffers, Richard Lopushansky