Patents by Inventor Seth Fraden

Seth Fraden has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240042445
    Abstract: Microfluidic structures and methods for manipulating fluids and reactions are provided. Such structures and methods may involve positioning fluid samples, e.g., in the form of droplets, in a carrier fluid (e.g., an oil, which may be immiscible with the fluid sample) in predetermined regions in a microfluidic network. In some embodiments, positioning of the droplets can take place in the order in which they are introduced into the microfluidic network (e.g., sequentially) without significant physical contact between the droplets. Because of the little or no contact between the droplets, there may be little or no coalescence between the droplets. Accordingly, in some such embodiments, surfactants are not required in either the fluid sample or the carrier fluid to prevent coalescence of the droplets. Structures and methods described herein also enable droplets to be removed sequentially from the predetermined regions.
    Type: Application
    Filed: October 18, 2023
    Publication date: February 8, 2024
    Inventors: Seth Fraden, Galder Cristobal-Azkarate
  • Patent number: 11819849
    Abstract: Microfluidic structures and methods for manipulating fluids and reactions are provided. Such structures and methods may involve positioning fluid samples, e.g., in the form of droplets, in a carrier fluid (e.g., an oil, which may be immiscible with the fluid sample) in predetermined regions in a microfluidic network. In some embodiments, positioning of the droplets can take place in the order in which they are introduced into the microfluidic network (e.g., sequentially) without significant physical contact between the droplets. Because of the little or no contact between the droplets, there may be little or no coalescence between the droplets. Accordingly, in some such embodiments, surfactants are not required in either the fluid sample or the carrier fluid to prevent coalescence of the droplets. Structures and methods described herein also enable droplets to be removed sequentially from the predetermined regions.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: November 21, 2023
    Assignee: Brandeis University
    Inventors: Seth Fraden, Galder Cristobal-Azkarate
  • Publication number: 20230234061
    Abstract: Microfluidic structures and methods for manipulating fluids, fluid components, and reactions are provided. In one aspect, such structures and methods can allow production of droplets of a precise volume, which can be stored/maintained at precise regions of the device. In another aspect, microfluidic structures and methods described herein are designed for containing and positioning components in an arrangement such that the components can be manipulated and then tracked even after manipulation. For example, cells may be constrained in an arrangement in microfluidic structures described herein to facilitate tracking during their growth and/or after they multiply.
    Type: Application
    Filed: April 3, 2023
    Publication date: July 27, 2023
    Inventors: Seth Fraden, Hakim Boukellal, Yanwei Jia, Seila Selimovic, Amy Rowat, Jeremy Agresti, David A. Weitz
  • Patent number: 11618024
    Abstract: Microfluidic structures and methods for manipulating fluids, fluid components, and reactions are provided. In one aspect, such structures and methods can allow production of droplets of a precise volume, which can be stored/maintained at precise regions of the device. In another aspect, microfluidic structures and methods described herein are designed for containing and positioning components in an arrangement such that the components can be manipulated and then tracked even after manipulation. For example, cells may be constrained in an arrangement in microfluidic structures described herein to facilitate tracking during their growth and/or after they multiply.
    Type: Grant
    Filed: February 24, 2021
    Date of Patent: April 4, 2023
    Assignees: President and Fellows of Harvard College, Brandeis University
    Inventors: Seth Fraden, Hakim Boukellal, Yanwei Jia, Seila Selimovic, Amy Rowat, Jeremy Agresti, David A. Weitz
  • Publication number: 20220382036
    Abstract: A device for imaging sensitive biological samples is provided. The device can include a plastic frame and a glass coverslip, each can be comprised of a biologically compatible material. The device can then be configured such that a biological sample placed therein can only be in contact with biologically compatible materials and, when imaged, provide optimal imaging characteristics by allowing imaging through the glass coverslip.
    Type: Application
    Filed: October 16, 2020
    Publication date: December 1, 2022
    Inventors: S. Ali Aghvami, Tim Sanchez, Seth Fraden, Dan Needleman, Marta Venturas Pedro
  • Patent number: 11366042
    Abstract: Microfluidic devices and methods for investigating crystallization and/or for controlling a reaction or a phase transition are disclosed. In one embodiment, the microfluidic device includes a reservoir layer; a membrane disposed on the reservoir layer; a wetting control layer disposed on the membrane; and a storage layer disposed on the wetting control layer, wherein the wetting control layer and the storage layer define a microfluidic channel comprising an upstream portion, a downstream portion, a first fluid path in communication with the upstream and the downstream portions, and a storage well positioned within the first fluid path, wherein the wetting control layer includes a fluid passageway in communication with the storage well and the membrane, and wherein the wetting control layer wets a first fluid introduced into the microfluidic channel, the first fluid comprising a hydrophilic, lipophilic, fluorophilic or gas phase as the continuous phase in the microfluidic channel.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: June 21, 2022
    Assignee: Brandeis University
    Inventors: Seth Fraden, Michael Heymann, Markus Ludwig
  • Patent number: 11224876
    Abstract: Microfluidic structures and methods for manipulating fluids, fluid components, and reactions are provided. In one aspect, such structures and methods can allow production of droplets of a precise volume, which can be stored/maintained at precise regions of the device. In another aspect, microfluidic structures and methods described herein are designed for containing and positioning components in an arrangement such that the components can be manipulated and then tracked even after manipulation. For example, cells may be constrained in an arrangement in microfluidic structures described herein to facilitate tracking during their growth and/or after they multiply.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: January 18, 2022
    Assignees: Brandeis University, President and Fellows of Harvard College
    Inventors: Seth Fraden, Hakim Boukellal, Yanwei Jia, Seila Selimovic, Amy Rowat, Jeremy Agresti, David A. Weitz
  • Publication number: 20210394186
    Abstract: Systems and methods are provided for producing isolated microfluidic droplets. In one aspect, a microfluidic system comprises a droplet isolation device and an injection system. The droplet isolation device includes at least one isolation unit and at least one capillary valve. The isolation unit has at least one chamber configured to receive at least two different aqueous solutions without mixing prior to entering the at least one chamber based at least in part on pressure levels of the at least two different aqueous solutions. The injection system includes an aqueous inlet, a non-aqueous inlet, a bypass outlet, a working fluid outlet, and a loading chamber. The injection system is configured to allow for a predetermined amount of each of the at least two different aqueous solutions to be delivered to the droplet isolation device sequentially.
    Type: Application
    Filed: October 29, 2019
    Publication date: December 23, 2021
    Inventors: S. Ali Aghvami, Seth Fraden
  • Patent number: 11148140
    Abstract: A microfluidic device comprising at least one isolation unit and at least one capillary valve. The at least one isolation unit has at least one chamber. The at least one chamber configured to receive at least two different aqueous solutions. The at least one capillary valve is configured to allow for the at least two different aqueous solutions to be introduced into the at least one chamber without mixing prior to entering the at least one chamber based at least in part on pressure levels of the at least two different aqueous solutions.
    Type: Grant
    Filed: January 16, 2018
    Date of Patent: October 19, 2021
    Assignee: BRANDEIS UNIVERSITY
    Inventor: Seth Fraden
  • Publication number: 20210178395
    Abstract: Microfluidic structures and methods for manipulating fluids, fluid components, and reactions are provided. In one aspect, such structures and methods can allow production of droplets of a precise volume, which can be stored/maintained at precise regions of the device. In another aspect, microfluidic structures and methods described herein are designed for containing and positioning components in an arrangement such that the components can be manipulated and then tracked even after manipulation. For example, cells may be constrained in an arrangement in microfluidic structures described herein to facilitate tracking during their growth and/or after they multiply.
    Type: Application
    Filed: February 24, 2021
    Publication date: June 17, 2021
    Inventors: Seth Fraden, Hakim Boukellal, Yanwei Jia, Seila Selimovic, Amy Rowat, Jeremy Agresti, David A. Weitz
  • Publication number: 20210164870
    Abstract: Microfluidic devices and methods for investigating crystallization and/or for controlling a reaction or a phase transition are disclosed. In one embodiment, the microfluidic device includes a reservoir layer; a membrane disposed on the reservoir layer; a wetting control layer disposed on the membrane; and a storage layer disposed on the wetting control layer, wherein the wetting control layer and the storage layer define a microfluidic channel comprising an upstream portion, a downstream portion, a first fluid path in communication with the upstream and the downstream portions, and a storage well positioned within the first fluid path, wherein the wetting control layer includes a fluid passageway in communication with the storage well and the membrane, and wherein the wetting control layer wets a first fluid introduced into the microfluidic channel, the first fluid comprising a hydrophilic, lipophilic, fluorophilic or gas phase as the continuous phase in the microfluidic channel.
    Type: Application
    Filed: February 8, 2021
    Publication date: June 3, 2021
    Inventors: Seth Fraden, Michael Heymann, Markus Ludwig
  • Patent number: 10960397
    Abstract: Microfluidic structures and methods for manipulating fluids, fluid components, and reactions are provided. In one aspect, such structures and methods can allow production of droplets of a precise volume, which can be stored/maintained at precise regions of the device. In another aspect, microfluidic structures and methods described herein are designed for containing and positioning components in an arrangement such that the components can be manipulated and then tracked even after manipulation. For example, cells may be constrained in an arrangement in microfluidic structures described herein to facilitate tracking during their growth and/or after they multiply.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: March 30, 2021
    Assignees: President and Fellows of Harvard College, Brandeis University
    Inventors: Seth Fraden, Hakim Boukellal, Yanwei Jia, Seila Selimovic, Amy Rowat, Jeremy Agresti, David A. Weitz
  • Patent number: 10942095
    Abstract: Microfluidic devices and methods for investigating crystallization and/or for controlling a reaction or a phase transition are disclosed. In one embodiment, the microfluidic device includes a reservoir layer; a membrane disposed on the reservoir layer; a wetting control layer disposed on the membrane; and a storage layer disposed on the wetting control layer, wherein the wetting control layer and the storage layer define a microfluidic channel comprising an upstream portion, a downstream portion, a first fluid path in communication with the upstream and the downstream portions, and a storage well positioned within the first fluid path, wherein the wetting control layer includes a fluid passageway in communication with the storage well and the membrane, and wherein the wetting control layer wets a first fluid introduced into the microfluidic channel, the first fluid comprising a hydrophilic, lipophilic, fluorophilic or gas phase as the continuous phase in the microfluidic channel.
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: March 9, 2021
    Assignee: Brandeis University
    Inventors: Seth Fraden, Michael Heymann, Markus Ludwig
  • Publication number: 20200330993
    Abstract: Microfluidic structures and methods for manipulating fluids, fluid components, and reactions are provided. In one aspect, such structures and methods can allow production of droplets of a precise volume, which can be stored/maintained at precise regions of the device. In another aspect, microfluidic structures and methods described herein are designed for containing and positioning components in an arrangement such that the components can be manipulated and then tracked even after manipulation. For example, cells may be constrained in an arrangement in microfluidic structures described herein to facilitate tracking during their growth and/or after they multiply.
    Type: Application
    Filed: June 30, 2020
    Publication date: October 22, 2020
    Inventors: Seth Fraden, Hakim Boukellal, Yanwei Jia, Seila Selimovic, Amy Rowat, Jeremy Agresti, David A. Weitz
  • Publication number: 20200269248
    Abstract: Microfluidic structures and methods for manipulating fluids and reactions are provided. Such structures and methods may involve positioning fluid samples, e.g., in the form of droplets, in a carrier fluid (e.g., an oil, which may be immiscible with the fluid sample) in predetermined regions in a microfluidic network. In some embodiments, positioning of the droplets can take place in the order in which they are introduced into the microfluidic network (e.g., sequentially) without significant physical contact between the droplets. Because of the little or no contact between the droplets, there may be little or no coalescence between the droplets. Accordingly, in some such embodiments, surfactants are not required in either the fluid sample or the carrier fluid to prevent coalescence of the droplets. Structures and methods described herein also enable droplets to be removed sequentially from the predetermined regions.
    Type: Application
    Filed: March 30, 2020
    Publication date: August 27, 2020
    Inventors: Seth Fraden, Galder Cristobal-Azkarate
  • Publication number: 20200238278
    Abstract: A microfluidic device comprising at least one isolation unit and at least one capillary valve. The at least one isolation unit has at least one chamber. The at least one chamber configured to receive at least two different aqueous solutions. The at least one capillary valve is configured to allow for the at least two different aqueous solutions to be introduced into the at least one chamber without mixing prior to entering the at least one chamber based at least in part on pressure levels of the at least two different aqueous solutions.
    Type: Application
    Filed: January 16, 2018
    Publication date: July 30, 2020
    Inventor: Seth FRADEN
  • Patent number: 10675626
    Abstract: Microfluidic structures and methods for manipulating fluids, fluid components, and reactions are provided. In one aspect, such structures and methods can allow production of droplets of a precise volume, which can be stored/maintained at precise regions of the device. In another aspect, microfluidic structures and methods described herein are designed for containing and positioning components in an arrangement such that the components can be manipulated and then tracked even after manipulation. For example, cells may be constrained in an arrangement in microfluidic structures described herein to facilitate tracking during their growth and/or after they multiply.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: June 9, 2020
    Assignees: President and Fellows of Harvard College, Brandeis University
    Inventors: Seth Fraden, Hakim Boukellal, Yanwei Jia, Seila Selimovic, Amy Rowat, Jeremy Agresti, David A. Weitz
  • Patent number: 10603662
    Abstract: Microfluidic structures and methods for manipulating fluids and reactions are provided. Such structures and methods may involve positioning fluid samples, e.g., in the form of droplets, in a carrier fluid (e.g., an oil, which may be immiscible with the fluid sample) in predetermined regions in a microfluidic network. In some embodiments, positioning of the droplets can take place in the order in which they are introduced into the microfluidic network (e.g., sequentially) without significant physical contact between the droplets. Because of the little or no contact between the droplets, there may be little or no coalescence between the droplets. Accordingly, in some such embodiments, surfactants are not required in either the fluid sample or the carrier fluid to prevent coalescence of the droplets. Structures and methods described herein also enable droplets to be removed sequentially from the predetermined regions.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: March 31, 2020
    Assignee: Brandeis University
    Inventors: Seth Fraden, Galder Cristobal-Azkarate
  • Publication number: 20200009570
    Abstract: Microfluidic structures and methods for manipulating fluids, fluid components, and reactions are provided. In one aspect, such structures and methods can allow production of droplets of a precise volume, which can be stored/maintained at precise regions of the device. In another aspect, microfluidic structures and methods described herein are designed for containing and positioning components in an arrangement such that the components can be manipulated and then tracked even after manipulation. For example, cells may be constrained in an arrangement in microfluidic structures described herein to facilitate tracking during their growth and/or after they multiply.
    Type: Application
    Filed: September 17, 2019
    Publication date: January 9, 2020
    Inventors: Seth Fraden, Hakim Boukellal, Yanwei Jia, Seila Selimovic, Amy Rowat, Jeremy Agresti, David A. Weitz
  • Publication number: 20190346347
    Abstract: Microfluidic devices and methods for investigating crystallization and/or for controlling a reaction or a phase transition are disclosed. In one embodiment, the microfluidic device includes a reservoir layer; a membrane disposed on the reservoir layer; a wetting control layer disposed on the membrane; and a storage layer disposed on the wetting control layer, wherein the wetting control layer and the storage layer define a microfluidic channel comprising an upstream portion, a downstream portion, a first fluid path in communication with the upstream and the downstream portions, and a storage well positioned within the first fluid path, wherein the wetting control layer includes a fluid passageway in communication with the storage well and the membrane, and wherein the wetting control layer wets a first fluid introduced into the microfluidic channel, the first fluid comprising a hydrophilic, lipophilic, fluorophilic or gas phase as the continuous phase in the microfluidic channel.
    Type: Application
    Filed: June 20, 2019
    Publication date: November 14, 2019
    Inventors: Seth Fraden, Michael Heymann, Markus Ludwig