Patents by Inventor Seung Ki Sul

Seung Ki Sul has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7667426
    Abstract: A system and method for controlling an IPM synchronous machine in a vehicle that calculates an operating trajectory of the machine on-line. The system defines three operating ranges of the machine based on voltage magnitude, where a first operating range is controlled by a current limit of the machine and second and third operating regions are controlled by a voltage limit of the machine. The system calculates d- and q-axis current reference signals in the reference rotor frame for each of the three regions. The system determines which set of current reference signals will be used to control the machine based on the operating region. The third operating region is used during over-modulation of the machine.
    Type: Grant
    Filed: June 17, 2005
    Date of Patent: February 23, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Yu-Seok Jeong, Seung Ki Sul, Silva Hiti, Khwaja M. Rahman, Bon-Ho Bae
  • Publication number: 20090230900
    Abstract: Methods and systems are provided for controlling an AC motor via an inverter. The method includes determining a delay-compensated offset based on a synchronous frame current, producing a current error based on a synchronous frame current and a commanded current, producing a voltage error based on an anti-windup offset and the current error, producing a commanded voltage based on the delay-compensated offset and the voltage error, and providing the inverter with the commanded voltage.
    Type: Application
    Filed: March 13, 2008
    Publication date: September 17, 2009
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: BONHO BAE, NITINKUMAR R. PATEL, STEVEN E. SCHULZ, JAMES M. NAGASHIMA, JUNG SIK YIM, SEUNG KI SUL
  • Patent number: 7358622
    Abstract: Provided is a distributed-power-generation system capable of maintaining an operation point and a method of controlling the same. The distributed-power-generation system comprises: a fuel cell producing current and high-temperature gas through an electric chemical reaction of hydrogen and oxygen; a turbine obtaining rotation power using heat produced by the fuel cell; a compressor supplying air to the fuel cell using the rotation power of the turbine; a motor/generator unit acting as a motor using a current supplied from a battery in a starting mode, and as a generator rotating by rotation power of a turbine and generating a current in a generating mode; and an inverter unit supplying a DC power produced by the fuel cell and an AC power produced by the motor/generator unit for a three-phase power system.
    Type: Grant
    Filed: June 18, 2007
    Date of Patent: April 15, 2008
    Assignee: Samsung Techwin Co., Ltd.
    Inventors: Hyun-sup Yang, Seung-ki Sul
  • Publication number: 20070241722
    Abstract: Provided is a distributed-power-generation system capable of maintaining an operation point and a method of controlling the same. The distributed-power-generation system comprises: a fuel cell producing current and high-temperature gas through an electric chemical reaction of hydrogen and oxygen; a turbine obtaining rotation power using heat produced by the fuel cell; a compressor supplying air to the fuel cell using the rotation power of the turbine; a motor/generator unit acting as a motor using a current supplied from a battery in a starting mode, and as a generator rotating by rotation power of a turbine and generating a current in a generating mode; and an inverter unit supplying a DC power produced by the fuel cell and an AC power produced by the motor/generator unit for a three-phase power system.
    Type: Application
    Filed: June 18, 2007
    Publication date: October 18, 2007
    Applicant: Samsung Techwin Co., Ltd.
    Inventors: Hyun-sup Yang, Seung-ki Sul
  • Patent number: 7282886
    Abstract: Methods and system are provided for controlling permanent magnet motor drive systems. The method comprises the steps of adjusting a first current command in response to a first voltage error to produce a first adjusted current, adjusting a second current command in response to a second voltage error to produce a second adjusted current, limiting each of the first and second adjusted current below a maximum current, converting the first adjusted current to a first potential, converting the second current command to a second potential, and supplying the first and second potentials to the permanent magnet motor. The first voltage error is derived from the second current command, and the second voltage error is derived from the first current command.
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: October 16, 2007
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Nitinkumar R. Patel, Bon-Ho Bae, James M. Nagashima, Tae-Suk Kwon, Seung Ki Sul
  • Patent number: 7250690
    Abstract: Provided is a distributed-power-generation system capable of maintaining an operation point and a method of controlling the same. The distributed-power-generation system comprises: a fuel cell producing current and high-temperature gas through an electric chemical reaction of hydrogen and oxygen; a turbine obtaining rotation power using heat produced by the fuel cell; a compressor supplying air to the fuel cell using the rotation power of the turbine; a motor/generator unit acting as a motor using a current supplied from a battery in a starting mode, and as a generator rotating by rotation power of a turbine and generating a current in a generating mode; and an inverter unit supplying a DC power produced by the fuel cell and an AC power produced by the motor/generator unit for a three-phase power system.
    Type: Grant
    Filed: July 20, 2005
    Date of Patent: July 31, 2007
    Assignee: Samsung Techwin Co., Ltd.
    Inventors: Hyun-sup Yang, Seung-ki Sul
  • Publication number: 20060071477
    Abstract: Provided is a distributed-power-generation system capable of maintaining an operation point and a method of controlling the same. The distributed-power-generation system comprises: a fuel cell producing current and high-temperature gas through an electric chemical reaction of hydrogen and oxygen; a turbine obtaining rotation power using heat produced by the fuel cell; a compressor supplying air to the fuel cell using the rotation power of the turbine; a motor/generator unit acting as a motor using a current supplied from a battery in a starting mode, and as a generator rotating by rotation power of a turbine and generating a current in a generating mode; and an inverter unit supplying a DC power produced by the fuel cell and an AC power produced by the motor/generator unit for a three-phase power system.
    Type: Application
    Filed: July 20, 2005
    Publication date: April 6, 2006
    Applicant: Samsung Techwin Co., Ltd.
    Inventors: Hyun-sup Yang, Seung-ki Sul
  • Patent number: 7023168
    Abstract: A control system for an electric machine includes a flux weakening module, which includes a voltage magnitude calculator that receives d-axis and q-axis command voltages and that generates a voltage magnitude. An error circuit compares the voltage magnitude to a reference voltage and generates an error signal. A controller receives the error signal and generates a feedback flux correction signal. A limiter limits the feedback flux correction signal to a predetermined flux value and generates a limited feedback flux correction signal. A feedforward stator flux generating circuit generates a feedforward stator flux signal. A summing circuit sums the feedforward stator flux signal and the limited feedback flux correction signal to generate a final stator flux command.
    Type: Grant
    Filed: September 13, 2004
    Date of Patent: April 4, 2006
    Assignee: General Motors Corporation
    Inventors: Nitinkumar R. Patel, Steven E. Schulz, Seung Ki Sul, Bon-Ho Bae
  • Patent number: 7002318
    Abstract: A control system for a motor including a rotor comprises a sensorless sensor module that includes a saliency-based estimator module that generates a first rotor position signal based on saliency and a back electromotive force (emf) estimator module that generates a second rotor position signal based on back emf. A selector selects the first rotor position signal for rotor speeds below a first rotor speed and the second rotor position signal for rotor speeds above the first rotor speed. A rotor position sensor senses a position of the rotor and generates a third rotor position signal. A fault detection module senses faults in the rotor position sensor and outputs the third rotor position signal when a fault is not detected and one of the first and second rotor position signals when the fault is detected. An indirect field oriented control (IFOC) system controls the motor based on a selected one of the first, second and third rotor position signals.
    Type: Grant
    Filed: September 23, 2004
    Date of Patent: February 21, 2006
    Assignee: General Motors Corporation
    Inventors: Steven E. Schulz, Sean E Gleason, Nitinkumar R. Patel, James M. Nagashima, Yu-Seok Jeong, Seung Ki Sul, Michael Milani
  • Patent number: 6989641
    Abstract: A method for controlling an electric machine having current sensors for less than every phase of the electric machine includes operating a processor to perform a test to preliminarily determine whether a fault exists in one or more of the current sensors and a test to finally determine that the fault exists in the one or more current sensors. The method further includes operating the processor to utilize a state observer of the electric machine to estimate states of the electric machine, wherein the state observer is provided state input measurements from each non-faulty current sensor, if any. Measurements from the current sensor or sensors determined to be faulty are disregarded. The processor controls the electric machine utilizing results from the state observer.
    Type: Grant
    Filed: June 2, 2003
    Date of Patent: January 24, 2006
    Assignee: General Motors Corporation
    Inventors: Steven E. Schulz, Nitinkumar R. Patel, James M. Nagashima, Yu-Seok Jeong, Seung Ki Sul
  • Patent number: 6924617
    Abstract: A control system for an electric motor having a stator and rotor including an inverter for providing power to the electric motor, a controller for controlling the inverter, a low speed control block to estimate the rotor angular position using stator current components operating in the controller, a high speed control block to estimate the rotor angular position using stator current components and stator flux position operating in the controller, a transition switch in the controller to vary operation between the low speed control block and the high speed control block, and where the inverter is controlled by six step operation.
    Type: Grant
    Filed: June 23, 2003
    Date of Patent: August 2, 2005
    Assignee: General Motors Corporation
    Inventors: Steven E. Schulz, Nitinkumar R. Patel, James M. Nagashima, Seung Ki Sul, Bon-Ho Bae
  • Patent number: 6894454
    Abstract: A control system for an electric motor including an inverter for providing power to the electric motor, a controller for controlling the inverter, a first motor speed control block in the controller injecting a high frequency signal into the electric motor to determine the speed and position of the electric motor, a second motor speed control block in the controller detecting the back electromotive force to determine the speed and position of the electric motor, and a transition control block in said controller to vary operation between the first motor speed control block and the second motor speed control block.
    Type: Grant
    Filed: October 10, 2002
    Date of Patent: May 17, 2005
    Assignee: General Motors Corporation
    Inventors: Nitinkumar R. Patel, Steven E. Schulz, James M. Nagashima, Seung Ki Sul, Yo-Chan Son, Bon-Ho Bae
  • Publication number: 20040257028
    Abstract: A control system for an electric motor having a stator and rotor including an inverter for providing power to the electric motor, a controller for controlling the inverter, a low speed control block to estimate the rotor angular position using stator current components operating in the controller, a high speed control block to estimate the rotor angular position using stator current components and stator flux position operating in the controller, a transition switch in the controller to vary operation between the low speed control block and the high speed control block, and where the inverter is controlled by six step operation.
    Type: Application
    Filed: June 23, 2003
    Publication date: December 23, 2004
    Inventors: Steven E. Schulz, Nitinkumar R. Patel, James M. Nagashima, Seung Ki Sul, Bon-Ho Bae
  • Publication number: 20040239272
    Abstract: A method for controlling an electric machine having current sensors for less than every phase of the electric machine includes operating a processor to perform a test to preliminarily determine whether a fault exists in one or more of the current sensors and a test to finally determine that the fault exists in the one or more current sensors. The method further includes operating the processor to utilize a state observer of the electric machine to estimate states of the electric machine, wherein the state observer is provided state input measurements from each non-faulty current sensor, if any. Measurements from the current sensor or sensors determined to be faulty are disregarded. The processor controls the electric machine utilizing results from the state observer.
    Type: Application
    Filed: June 2, 2003
    Publication date: December 2, 2004
    Inventors: Steven E. Schulz, Nitinkumar R. Patel, James M. Nagashima, Yu-Seok Jeong, Seung-Ki Sul
  • Publication number: 20040070362
    Abstract: A control system for an electric motor including an inverter for providing power to the electric motor, a controller for controlling the inverter, a first motor speed control block in the controller injecting a high frequency signal into the electric motor to determine the speed and position of the electric motor, a second motor speed control block in the controller detecting the back electromotive force to determine the speed and position of the electric motor, and a transition control block in said controller to vary operation between the first motor speed control block and the second motor speed control block.
    Type: Application
    Filed: October 10, 2002
    Publication date: April 15, 2004
    Inventors: Nitinkumar R. Patel, Steven E. Schulz, James M. Nagashima, Seung Ki Sul, Yo-Chan Son, Bon-Ho Bae
  • Patent number: 6639380
    Abstract: A field orientation control method for an AC motor, which includes assuming an arbitrary axis as an estimated control axis in the synchronously rotating reference frame; injecting a high-frequency fluctuating signal to the estimated control axis; determining the position of a control axis using current, voltage or impedance on the estimated control axis in the synchronously rotating reference frame, generated by the injected high-frequency signal; and determining the position and speed of the rotor based on the control axis thus located. Since this method uses the variation of impedance caused by the induction machine's generation of field and by various shapes, the control performance is more stable than other conventional control methods. This AC motor's control method may be applied to control of torque, speed and position at a low speed where it is difficult to affix a detector and where a highly efficient operation is required.
    Type: Grant
    Filed: April 3, 2002
    Date of Patent: October 28, 2003
    Inventors: Seung-ki Sul, Jung-ik Ha
  • Publication number: 20030006723
    Abstract: A field orientation control method for an AC motor, which includes assuming an arbitrary axis as an estimated control axis in the synchronously rotating reference frame; injecting a high-frequency fluctuating signal to the estimated control axis; determining the position of a control axis using current, voltage or impedance on the estimated control axis in the synchronously rotating reference frame, generated by the injected high-frequency signal; and determining the position and speed of the rotor based on the control axis thus located. Since this method uses the variation of impedance caused by the induction machine's generation of field and by various shapes, the control performance is more stable than other conventional control methods. This AC motor's control method may be applied to control of torque, speed and position at a low speed where it is difficult to affix a detector and where a highly efficient operation is required.
    Type: Application
    Filed: April 3, 2002
    Publication date: January 9, 2003
    Inventors: Seung-ki Sul, Jung-ik Ha
  • Patent number: 6185115
    Abstract: A three-phase pulse width modulation method in a motor control system which drives a three-phase AC motor that determines a current switching pattern of a converter and then moves switching points of three phases of an inverter so that a switching point of a phase among the three-phases of the converter accords with a switching point of a phase among the three-phases of the inverter in accordance with the determined switching pattern, thereby reducing a voltage generated between the three-phase Ac motor and a ground, that is the size of the pulse number of a common-mode voltage.
    Type: Grant
    Filed: July 16, 1999
    Date of Patent: February 6, 2001
    Inventors: Seung Ki Sul, Hyeoun Dong Lee
  • Patent number: 5886498
    Abstract: The present invention is related to the method to find the rotor flux angle from stator voltages and currents by injecting high frequency signal. The injected signal is not rotating one but fluctuating one at a reference frame rotating synchronously to the fundamental stator frequency. The difference of impedances between the flux axis and the quadrature axis at high frequency signal injected on the rotor flux angle is explained by the equivalent circuit equation of the induction machine. The difference is verified by experiments on the test motors at various conditions. The sensorless field orientation control method is proposed and experimental results clarify the satisfactory operation of the method with 150% load torque at zero stator frequency.
    Type: Grant
    Filed: August 28, 1997
    Date of Patent: March 23, 1999
    Inventors: Seung-ki Sul, Jung-ik Ha