Patents by Inventor Shahab OVEIS GHARAN

Shahab OVEIS GHARAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10903903
    Abstract: A transmitter (102,200) applies a dimensional transformation to preliminary digital drive signals representing symbols, thereby generating transformed digital drive signals (704) designed to represent each symbol using a plurality of first dimensions of an optical carrier (242), the first dimensions distributed over two or more timeslots. The preliminary digital drive signals are designed to represent each symbol using a plurality of second dimensions of the carrier, which differ from the first dimensions. Using the transformed signals, the transmitter generates (706) an optical signal (260). A receiver (102,300) receives (802) an optical signal (360) and determines received digital signals (804) corresponding to the first dimensions. The receiver applies an inverse dimensional transformation to the received digital signals to generate preliminary digital drive signal estimates (806) corresponding to the second dimensions, thereby permitting estimation of the symbols (808).
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: January 26, 2021
    Assignee: CIENA CORPORATION
    Inventors: Amir Keyvan Khandani, Shahab Oveis Gharan, Michael Andrew Reimer, Maurice O'Sullivan, Kim B. Roberts
  • Publication number: 20200412520
    Abstract: An optical system includes a transmitter including transmitter circuitry configured to cause transmission of a transmitted optical signal over a fiber link on an X polarization and a Y polarization; and a receiver including receiver circuitry configured to receive a received optical signal from the fiber link on the X polarization and the Y polarization, wherein the transmitter circuitry is configured to cause State of Polarization (SOP) changes on the X polarization and the Y polarization for a test of the fiber link. The transmitter circuitry and the receiver circuitry are built-in with the transmitter and the receiver, respectively, for performance of the test.
    Type: Application
    Filed: September 10, 2020
    Publication date: December 31, 2020
    Inventors: Ahmad Abdo, Shahab Oveis Gharan, Sadok Aouini, Naim Ben-Hamida, Timothy James Creasy, Lukas Jakober, Yalmez M.A. Yazaw
  • Patent number: 10848269
    Abstract: An optical transmitter device includes a digital signal processor (DSP) having digital hardware. The DSP is operative to generate shaped bits from a first set of information bits, and to apply a systematic forward error correction (FEC) scheme to encode the shaped bits and a second set of information bits, where the first set of information bits and the second set of information bits are disjoint sets. Unshaped bits and the shaped bits are mapped to selected symbols or are used to select symbols from one or more constellations. The selected symbols are mapped to physical dimensions. Each unshaped bit is either one of the second set of information bits or one of multiple parity bits resulting from the FEC encoding. In this manner, a target spectral efficiency is achieved.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: November 24, 2020
    Assignee: Ciena Corporation
    Inventors: Hamid Ebrahimzad, Michael Andrew Reimer, Vladimir S. Grigoryan, Shahab Oveis Gharan
  • Patent number: 10826605
    Abstract: An optical transmitter (102,200) is operable to generate an optical signal (260) by modulating a number N of frequency divisional multiplexing (FDM) subcarriers using transformed digital signals which are determined by applying a pseudo FDM (pFDM) transformation to preliminary digital signals representative of multi-bit symbols. Rather than experiencing the effects of the number N of FDM channels, the optical signal experiences the effects of a different number M of pFDM channels, where M?N. In some examples, the number M of pFDM channels is less than the number N of FDM channels, and frequency-dependent degradations may be averaged across different symbol streams. In other examples, the number M of pFDM channels is greater than the number N of FDM channels, and different symbol streams may experience different frequency-dependent degradations. An optical receiver (102,300) is operable to apply an inverse pFDM transformation to recover estimates of the multi-bit symbols.
    Type: Grant
    Filed: September 2, 2019
    Date of Patent: November 3, 2020
    Assignee: Ciena Corporation
    Inventors: Shahab Oveis Gharan, Michael Andrew Reimer, Andrew D. Shiner, Hamid Ebrahimzad, Maurice O'Sullivan, Kim B. Roberts
  • Publication number: 20200344038
    Abstract: A system includes an optical transmitter including a transmitter Phase Lock Loop (PLL) circuit; an optical receiver connected to the optical transmitter and including a receiver PLL circuit; and circuitry configured to inject a test stimulus to a clock causing jitter in one of the transmitter PLL circuitry and the receiver PLL circuit, wherein the test stimulus is set for characterizing the jitter tolerance of optical receiver. As well, a circuit that injects SOP transient at the transmitter is included. It is configured to test the tolerance of optical receiver to handle fast change in the SOP state. The optical receiver is configured to determine if the system is operational at a jitter value due to the test stimulus based on compliance to one or more thresholds including any of a target Bit Error Rate, a Forward-Error-Correction (FEC) hit, and a jitter Root Mean Square (RMS).
    Type: Application
    Filed: April 23, 2019
    Publication date: October 29, 2020
    Inventors: Sadok Aouini, Naim Ben-Hamida, Ahmad Abdo, Timothy James Creasy, Lukas Jakober, Yalmez M.A. Yazaw, Shahab Oveis Gharan
  • Patent number: 10819432
    Abstract: A receiver is configured to calculate a representation of a received signal conveying symbols at a frequency fS, the representation comprising non-zero components at frequencies of magnitudes exceeding fS/2. The receiver calculates a first term comprising a function of a phase difference between the representation at a first pair of frequencies separated by a gap ? and comprised within a first band of width 2? centered at fS/2, and a second term comprising a function of a phase difference between the representation at a second pair of frequencies separated by the gap ? and comprised within a second band of width 2? centered at ?fS/2, wherein ?<2?, and wherein the higher frequency of the first pair and the higher frequency of the second pair are separated by the frequency fS. An estimate of chromatic dispersion in the received signal is calculated based on the first term and the second term.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: October 27, 2020
    Assignee: CIENA CORPORATION
    Inventors: Shahab Oveis Gharan, Lukas Jakober
  • Patent number: 10805064
    Abstract: A system includes an optical transmitter including a transmitter Phase Lock Loop (PLL) circuit; an optical receiver connected to the optical transmitter and including a receiver PLL circuit; and circuitry configured to inject a test stimulus to a clock causing jitter in one of the transmitter PLL circuitry and the receiver PLL circuit, wherein the test stimulus is set for characterizing the jitter tolerance of optical receiver. As well, a circuit that injects SOP transient at the transmitter is included. It is configured to test the tolerance of optical receiver to handle fast change in the SOP state. The optical receiver is configured to determine if the system is operational at a jitter value due to the test stimulus based on compliance to one or more thresholds including any of a target Bit Error Rate, a Forward-Error-Correction (FEC) hit, and a jitter Root Mean Square (RMS).
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: October 13, 2020
    Assignee: Ciena Corporation
    Inventors: Sadok Aouini, Naim Ben-Hamida, Ahmad Abdo, Timothy James Creasy, Lukas Jakober, Yalmez M. A. Yazaw, Shahab Oveis Gharan
  • Publication number: 20200313764
    Abstract: An optical transmitter (102,200) is operable to generate an optical signal (260) by modulating a number N of frequency divisional multiplexing (FDM) subcarriers using transformed digital signals which are determined by applying a pseudo FDM (pFDM) transformation to preliminary digital signals representative of multi-bit symbols. Rather than experiencing the effects of the number N of FDM channels, the optical signal experiences the effects of a different number M of pFDM channels, where M?N. In some examples, the number M of pFDM channels is less than the number N of FDM channels, and frequency-dependent degradations may be averaged across different symbol streams. In other examples, the number M of pFDM channels is greater than the number N of FDM channels, and different symbol streams may experience different frequency-dependent degradations. An optical receiver (102,300) is operable to apply an inverse pFDM transformation to recover estimates of the multi-bit symbols.
    Type: Application
    Filed: September 2, 2019
    Publication date: October 1, 2020
    Inventors: Shahab Oveis Gharan, Michael Andrew Reimer, Andrew D. Shiner, Hamid Ebrahimzad, Maurice O'Sullivan, Kim B. Roberts
  • Publication number: 20200304211
    Abstract: A transmitter (102,200) applies a dimensional transformation to preliminary digital drive signals representing symbols, thereby generating transformed digital drive signals (704) designed to represent each symbol using a plurality of first dimensions of an optical carrier (242), the first dimensions distributed over two or more timeslots. The preliminary digital drive signals are designed to represent each symbol using a plurality of second dimensions of the carrier, which differ from the first dimensions. Using the transformed signals, the transmitter generates (706) an optical signal (260). A receiver (102,300) receives (802) an optical signal (360) and determines received digital signals (804) corresponding to the first dimensions. The receiver applies an inverse dimensional transformation to the received digital signals to generate preliminary digital drive signal estimates (806) corresponding to the second dimensions, thereby permitting estimation of the symbols (808).
    Type: Application
    Filed: May 21, 2019
    Publication date: September 24, 2020
    Inventors: Amir Keyvan KHANDANI, Shahab OVEIS GHARAN, Michael Andrew REIMER, Maurice O'SULLIVAN, Kim B. ROBERTS
  • Patent number: 10735135
    Abstract: A transmitter of a communications system includes a first encoder configured to apply a shaping operation to a data signal to generate a shaped data signal, a second encoder configured to encode the shaped data signal according to a forward error correction (FEC) scheme to generate an encoded signal, and a constellation mapper configured to modulate the encoded signal to symbol values according to a modulation scheme to generate a corresponding symbol stream for transmission through the communications system. The shaping operation reduces average constellation energy for constellations of the modulation scheme.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: August 4, 2020
    Assignee: Ciena Corporation
    Inventors: Shahab Oveis Gharan, Kim B. Roberts, Akbar Ghasemi, Mahmoud Taherzadehboroujeni
  • Publication number: 20200195377
    Abstract: Compression coding may be used with forward error correction (FEC) coding to provide higher information rates by reducing the proportion of redundant bits relative to information bits that are transmitted from a transmitter to a receiver. In one example, first determiners and second determiners are calculated from a set of information bits, where each first determiner is calculated from a different first subset of the information bits along a first dimension, and each second determiner is calculated from a different second subset of the information bits along a second dimension that differs from the first dimension. First and second nubs are calculated from the first and second determiners, respectively, each nub comprising a number of redundant bits that is less than the number of bits in the determiners from which the nub is calculated. The information bits and the nubs are transmitted over one or more communications channels.
    Type: Application
    Filed: February 26, 2020
    Publication date: June 18, 2020
    Applicant: CIENA CORPORATION
    Inventors: Shahab OVEIS GHARAN, MOHAMMAD EHSAN SEIFI, KIM B. ROBERTS
  • Publication number: 20200145149
    Abstract: In data communications, a suitably designed contrast coding scheme, comprising a process of contrast encoding (108) at a transmitter end (101) and a process of contrast decoding (120) at a receiver end (103), may be used to create contrast between the bit error rates ‘BERs’ experienced by different classes of bits. Contrast coding may be used to tune the BERs experienced by different subsets of bits, relative to each other, to better match a plurality of forward error correction ‘FEC’ schemes (104, 124) used for transmission of information bits (102), which may ultimately provide a communications system (100) having a higher noise tolerance, or greater data capacity, or smaller size, or lower heat.
    Type: Application
    Filed: July 30, 2018
    Publication date: May 7, 2020
    Inventors: Shahab OVEIS GHARAN, Mohammad Ehsan SEIFI, Kim B. ROBERTS
  • Publication number: 20200119840
    Abstract: An optical transmitter device includes a digital signal processor (DSP) having digital hardware. The DSP is operative to generate shaped bits from a first set of information bits, and to apply a systematic forward error correction (FEC) scheme to encode the shaped bits and a second set of information bits, where the first set of information bits and the second set of information bits are disjoint sets. Unshaped bits and the shaped bits are mapped to selected symbols or are used to select symbols from one or more constellations. The selected symbols are mapped to physical dimensions. Each unshaped bit is either one of the second set of information bits or one of multiple parity bits resulting from the FEC encoding. In this manner, a target spectral efficiency is achieved.
    Type: Application
    Filed: October 11, 2019
    Publication date: April 16, 2020
    Inventors: Hamid Ebrahimzad, Michael Andrew Reimer, Vladimir Grigoryan, Shahab Oveis Gharan
  • Patent number: 10615913
    Abstract: Compression coding techniques are proposed for use with forward error correction (FEC) coding, which may provide higher information rates by reducing the proportion of redundant bits relative to information bits that are transmitted from a transmitter to a receiver. In one example, the transmitter calculates a plurality of determiners from a set of information bits, where each determiner is calculated as a first function of a respective first subset of the information bits. The transmitter then calculates a nub as a second function of the plurality of determiners, where the nub comprises a number of redundant bits that is less than a number of bits comprised in the plurality of determiners. The set of information bits is transmitted to the receiver in a first manner, and the nub is transmitted to the receiver in a second manner, where the first manner may be distinct from the second manner.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: April 7, 2020
    Assignee: CIENA CORPORATION
    Inventors: Shahab Oveis Gharan, Mohammad Ehsan Seifi, Kim B. Roberts
  • Publication number: 20200036475
    Abstract: A transmitter of a communications system includes a first encoder configured to apply a shaping operation to a data signal to generate a shaped data signal, a second encoder configured to encode the shaped data signal according to a forward error correction (FEC) scheme to generate an encoded signal, and a constellation mapper configured to modulate the encoded signal to symbol values according to a modulation scheme to generate a corresponding symbol stream for transmission through the communications system. The shaping operation reduces average constellation energy for constellations of the modulation scheme.
    Type: Application
    Filed: October 8, 2019
    Publication date: January 30, 2020
    Inventors: Shahab OVEIS GHARAN, Kim B. ROBERTS, Akbar GHASEMI, Mahmoud TAHERZADEHBOROUJENI
  • Patent number: 10484131
    Abstract: Client data bits, including first client data bits and second client data bits, are communicated from a transmitter to a receiver. At the transmitter, the first client data bits are processed to generate processed values, where each processed value is more likely to be a first element than a second element. Forward Error Correction ‘FEC’ encoding is applied to the second client data bits to generate FEC-encoded values. Symbols are created by mapping the FEC-encoded values to first positions in the symbols and by mapping the processed values to second positions in the symbols. The symbols are modulated onto a communications channel using a modulation scheme with a code that assigns a lower average energy to symbols containing the first elements in the second positions than to symbols containing the second elements in the second positions. At the receiver, client data bits are decoded using conditional chain decoding.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: November 19, 2019
    Assignee: CIENA CORPORATION
    Inventors: Shahab Oveis Gharan, Mohammad Ehsan Seifi, Masoud Ebrahimi Tazeh Mahalleh, Kim B. Roberts
  • Patent number: 10419109
    Abstract: An optical transmitter is operable to generate an optical signal by modulating a number N of frequency divisional multiplexing (FDM) subcarriers using transformed digital signals which are determined by applying a pseudo FDM (pFDM) transformation to preliminary digital signals representative of multi-bit symbols. Rather than experiencing the effects of the number N of FDM channels, the optical signal experiences the effects of a different number M of pFDM channels, where M?N. In some examples, the number M of pFDM channels is less than the number N of FDM channels, and frequency-dependent degradations may be averaged across different symbol streams. In other examples, the number M of pFDM channels is greater than the number N of FDM channels, and different symbol streams may experience different frequency-dependent degradations. An optical receiver is operable to apply an inverse pFDM transformation in order to recover estimates of the multi-bit symbols.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: September 17, 2019
    Assignee: CIENA CORPORATION
    Inventors: Shahab Oveis Gharan, Michael Andrew Reimer, Andrew D. Shiner, Hamid Ebrahimzad, Maurice O'Sullivan, Kim B. Roberts
  • Patent number: 10396902
    Abstract: A method of data symbol recovery in a coherent receiver of an optical communications system includes processing data symbol estimates detected from a received optical signal, and determining recovered symbol values from the processed data symbol estimates. The recovered symbol values belong to a symbol constellation having a predetermined asymmetry. Processing the data symbol estimates compensates phase noise that is greater than one decision region of the symbol constellation. A coherent receiver of an optical communications system includes a module configured to process data symbol estimates detected from a received optical signal and a decision circuit configured to determine recovered symbol values from the processed data symbol estimates. The recovered symbol values belong to a symbol constellation having a predetermined asymmetry. Processing the data symbol estimates compensates phase noise that is greater than one decision region of the symbol constellation.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: August 27, 2019
    Assignee: Ciena Corporation
    Inventors: Shahab Oveis Gharan, Kim B. Roberts, Mahmoud Taherzadehboroujeni, Amir Khandani, Akbar Ghasemi
  • Patent number: 10389447
    Abstract: A receiver may receive an optical signal over an optical communications channel established between the receiver and a transmitter, the received optical signal comprising a degraded version of a modulated optical signal generated at the transmitter. The receiver may determine received digital signals corresponding to a plurality of first dimensions of the received optical signal, wherein the first dimensions correspond to dimensions of an optical carrier modulated at the transmitter to represent a multi-bit symbol, and wherein the first dimensions are distributed over two or more timeslots. The receiver may determine preliminary digital drive signal estimates using an inverse dimensional transformation and the received digital signals, the preliminary digital drive signal estimates corresponding to a plurality of second dimensions. The receiver may determine an estimate of the multi-bit symbol using the preliminary digital drive signal estimates.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: August 20, 2019
    Assignee: CIENA CORPORATION
    Inventors: Amir Khandani, Shahab Oveis Gharan, Michael Andrew Reimer, Maurice O'Sullivan, Kim B. Roberts
  • Patent number: 10374623
    Abstract: A controlled switch having N inputs and a single output (N?2) is switchable between N states. In each state a respective one of the inputs is connected to the single output. There are N sources of sub-streams of analog samples, each sub-stream composed of pairs of adjacent analog samples. Each source is coupled to a respective one of the inputs. In operation, the controlled switch is controlled by a control signal to switch between the N states. While the controlled switch is in any one of the states, a data transition occurs between two adjacent analog samples in the sub-stream whose source is coupled to the input that is connected to the single output. The single output yields the high-bandwidth analog signal. Any pair of adjacent analog samples in any one of the sub-streams substantially determines a corresponding pair of adjacent analog samples in the high-bandwidth analog signal.
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: August 6, 2019
    Assignee: Ciena Corporation
    Inventors: Shahab Oveis Gharan, Yuriy Greshishchev, Naim Ben-Hamida, Kim B. Roberts