Patents by Inventor Shahin Goodarznia

Shahin Goodarznia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11447434
    Abstract: A method of converting one or more alkanes to one or more alkenes that includes a) providing a first stream containing one or more alkanes and oxygen to an oxidative dehydrogenation reactor; b) converting at least a portion of the one or more alkanes to one or more alkenes in the oxidative dehydrogenation reactor to provide a second stream exiting the oxidative dehydrogenation reactor containing one or more alkanes, one or more alkenes, oxygen, carbon monoxide and optionally acetylene; and c) providing the second stream to a second reactor containing a catalyst that includes a group 11 metal to convert a least a portion of the carbon monoxide to carbon dioxide and reacting the acetylene.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: September 20, 2022
    Assignee: NOVA Chemicals (International) S.A.
    Inventors: Vasily Simanzhenkov, Shahin Goodarznia, Kamal Serhal, Xiaoliang Gao, Yoonhee Kim
  • Publication number: 20220251004
    Abstract: A system and method for coproduction in the production of ethylene, including contacting ethane with an oxidative dehydrogenation (ODH) catalyst in presence of oxygen in a first reactor to dehydrogenate ethane to ethylene, and contacting a first-reactor effluent with an ODH catalyst in a second reactor to form ethanol and acetaldehyde.
    Type: Application
    Filed: August 17, 2020
    Publication date: August 11, 2022
    Inventors: Vasily Simanzhenkov, Shahin Goodarznia
  • Publication number: 20220241744
    Abstract: A method of safely mixing a hydrocarbon with an oxidant is provided. The hydrocarbon and oxidant are saturated with a non-flammable liquid in pre-mix zones that are flooded with the non-flammable liquid and fluidly connected to a common mixing zone that is partially flooded with the non-flammable liquid. The saturated hydrocarbon and oxidant combine within the common mixing zone forming bubbles of a homogeneous gas mixture of hydrocarbon and oxidant, preferably in a ratio of hydrocarbon to oxidant that is outside of the flammability limit, that can exit the non-flammable liquid into a headspace where it can be retrieved for use in an oxidative reaction process such as oxidative dehydrogenation.
    Type: Application
    Filed: July 15, 2020
    Publication date: August 4, 2022
    Inventors: Vasily SIMANZHENKOV, Shahin GOODARZNIA, Bolaji OLAYIWOLA, Kamal SERHAL, Michael KOSELEK
  • Publication number: 20220144722
    Abstract: A process, a system, and an apparatus are provided for converting a lower alkane to an alkene. Oxygen and a lower alkane are provided to an ODH reactor. At least a portion of the lower alkane is converted to an alkene and an ODH stream comprising the alkene, an oxygenate, water, and carbon monoxide is produced. The ODH stream is provided to a water gas shift/hydrogenation (WGS/H) reactor including a WGS/H catalyst. The ODH stream is reacted within the WGS/H reactor and hydrogen and carbon dioxide are generated from the carbon monoxide and water. At least a portion of the oxygenate and hydrogen are converted to an alcohol. Additionally, the alcohol may be dehydrated to form additional alkene and water.
    Type: Application
    Filed: December 20, 2019
    Publication date: May 12, 2022
    Inventors: Shahin Goodarznia, Vasily Simanzhenkov, Bolaji Olayiwola, Yipei Styles
  • Patent number: 11306044
    Abstract: Provided in this disclosure is a process for the oxidative dehydrogenation of a lower alkane into a corresponding alkene. The process includes providing a gas stream comprising the lower alkane to a reactor; contacting, in the oxidative dehydrogenation reactor, the lower alkane with a catalyst that includes a mixed metal oxide; and providing to the last 50% of the oxidative dehydrogenation reactor a stream comprising from 0.01 vol. % to 10 vol. % of a C1-C3 alcohol.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: April 19, 2022
    Assignee: NOVA Chemicals (International) S.A.
    Inventors: Bolaji Olayiwola, Vasily Simanzhenkov, Shahin Goodarznia, Mohamed Aiffa
  • Patent number: 11167267
    Abstract: Oxidative dehydrogenation catalysts including mixed oxides of Mo, V, Nb, Te, and optionally a promoter may be dissolved in aqueous solutions of oxalic acid. This permits the removal of catalyst and catalyst residues from reactors for the oxidative dehydrogenation of paraffins and particularly ethane.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: November 9, 2021
    Assignee: NOVA Chemicals (International) S.A.
    Inventors: Xiaoliang Gao, Vasily Simanzhenkov, Shahin Goodarznia, Marie Barnes, David Sullivan
  • Publication number: 20210309592
    Abstract: Provided in this disclosure is a process for the oxidative dehydrogenation of a lower alkane into a corresponding alkene. The process includes providing a gas stream comprising the lower alkane to a reactor; contacting, in the oxidative dehydrogenation reactor, the lower alkane with a catalyst that includes a mixed metal oxide; and providing to the last 50% of the oxidative dehydrogenation reactor a stream comprising from 0.01 vol. % to 10 vol. % of a C1-C3 alcohol.
    Type: Application
    Filed: May 10, 2021
    Publication date: October 7, 2021
    Inventors: Bolaji Olayiwola, Vasily Simanzhenkov, Shahin Goodarznia, Mohamed Aiffa
  • Patent number: 11110423
    Abstract: Incorporating into a fixed bed reactor for an exothermal reaction having a catalyst supported on a support having a thermal conductivity typically less than 30 W/mk within the reaction temperature control limits heat dissipative particles having a thermal conductivity of at least 50 W/mk less than 30 W/mk within the reaction temperature control limits helps control the temperature of the reactor bed.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: September 7, 2021
    Assignee: NOVA Chemicals (International) S.A.
    Inventors: Vasily Simanzhenkov, Kamal Elias Serhal, Shahin Goodarznia
  • Patent number: 11111194
    Abstract: Oxidative dehydrogenation is an alternative to the energy extensive steam cracking process presently used for the production of olefins from paraffins. Various embodiments of an oxidative dehydrogenation chemical complex designed to allow removal of sulfur containing contaminants that collect in the gas mixer unit and in the feed lines leading to the ODH reactor are disclosed herein.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: September 7, 2021
    Assignee: NOVA CHEMICALS (INTERNATIONAL) S.A.
    Inventors: Vasily Simanzhenkov, Shahin Goodarznia, Christina Orta, Kamal Serhal, Eric Clavelle, Michael Koselek, Yoonhee Kim
  • Patent number: 11053179
    Abstract: Provided in this disclosure is a process for the oxidative dehydrogenation of a lower alkane into a corresponding alkene. The process includes providing a gas stream comprising the lower alkane to a reactor; contacting, in the oxidative dehydrogenation reactor, the lower alkane with a catalyst that includes a mixed metal oxide; and providing to the last 50% of the oxidative dehydrogenation reactor a stream comprising from 0.01 vol. % to 10 vol. % of a C1-C3 alcohol.
    Type: Grant
    Filed: October 16, 2019
    Date of Patent: July 6, 2021
    Assignee: NOVA Chemicals (International) S.A.
    Inventors: Bolaji Olayiwola, Vasily Simanzhenkov, Shahin Goodarznia, Mohamed Aiffa
  • Publication number: 20210040018
    Abstract: A method that includes (a) providing a stream containing ethane and oxygen to an ODH reactor; (b) converting a portion of the ethane to ethylene and acetic acid in the ODH reactor to provide a stream containing ethane, ethylene, acetic acid, oxygen and carbon monoxide; (c) separating a portion of the acetic acid from the stream to provide an acetic acid stream and a stream containing ethane, ethylene, oxygen and carbon monoxide; (d) providing the stream to a CO Oxidation Reactor containing a catalyst that includes a group 11 metal to convert carbon monoxide to carbon dioxide and reacting acetylene to produce a stream containing ethane, ethylene and carbon dioxide; and (e) providing a portion of the stream and a portion of the acetic acid stream to a third reactor containing a catalyst that includes a metal selected from group 10 and group 11 metals to produce vinyl acetate.
    Type: Application
    Filed: March 8, 2019
    Publication date: February 11, 2021
    Applicant: NOVA Chemicals (International) S.A.
    Inventors: David Gent, Shahin Goodarznia, Vasily Simanzhenkov, Kamal Serhal, Claire Ennis, Robert Ladd
  • Patent number: 10899981
    Abstract: A method for preventing or removing water soluble fouling located downstream of an oxidative dehydrogenation (ODH) reactor is described. The method employs the introduction of water upstream of fouling locations, either continuously or intermittently, which acts to solubilize and carry away fouling material. The method has the advantage of being applicable for use while an ODH process is ongoing, circumventing the need for a costly shutdown.
    Type: Grant
    Filed: November 12, 2018
    Date of Patent: January 26, 2021
    Assignee: NOCA Chemicals (International) S.A.
    Inventors: Vasily Simanzhenkov, Shahin Goodarznia, Yoonhee Kim, Eric Clavelle
  • Publication number: 20200407289
    Abstract: A method of converting one or more alkanes to one or more alkenes that includes a) providing a first stream containing one or more alkanes and oxygen to an oxidative dehydrogenation reactor; b) converting at least a portion of the one or more alkanes to one or more alkenes in the oxidative dehydrogenation reactor to provide a second stream exiting the oxidative dehydrogenation reactor containing one or more alkanes, one or more alkenes, oxygen, carbon monoxide and optionally acetylene; and c) providing the second stream to a second reactor containing a catalyst that includes a group 11 metal to convert a least a portion of the carbon monoxide to carbon dioxide and reacting the acetylene.
    Type: Application
    Filed: March 8, 2019
    Publication date: December 31, 2020
    Applicant: NOVA Chemicals (International) S.A.
    Inventors: Vasily Simanzhenkov, Shahin Goodarznia, Kamal Serhal, Xiaoliang Gao, Yoonhee Kim
  • Publication number: 20200254414
    Abstract: Incorporating into a fixed bed reactor for an exothermal reaction having a catalyst supported on a support having a thermal conductivity typically less than 30 W/mk within the reaction temperature control limits heat dissipative particles having a thermal conductivity of at least 50 W/mk less than 30 W/mk within the reaction temperature control limits helps control the temperature of the reactor bed.
    Type: Application
    Filed: April 27, 2020
    Publication date: August 13, 2020
    Applicant: NOVA Chemicals (International) S.A.
    Inventors: Vasily Simanzhenkov, Kamal Elias Serhal, Shahin Goodarznia
  • Patent number: 10668441
    Abstract: Incorporating into a fixed bed reactor for an exothermal reaction having a catalyst supported on a support having a thermal conductivity typically less than 30 W/mk within the reaction temperature control limits heat dissipative particles having a thermal conductivity of at least 50 W/mk less than 30 W/mk within the reaction temperature control limits helps control the temperature of the reactor bed.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: June 2, 2020
    Assignee: NOVA Chemicals (International) S.A.
    Inventors: Vasily Simanzhenkov, Kamal Elias Serhal, Shahin Goodarznia
  • Publication number: 20200156055
    Abstract: Oxidative dehydrogenation of alkanes employs a catalyst, usually a mixed metal oxide, to convert, in the presence of oxygen, a lower alkane into its corresponding alkene. Continuous operation of an oxidative dehydrogenation process may result in a gradual decrease of catalyst activity and or selection, requiring downtime for regeneration. Provided herein is a process for regeneration of an oxidative dehydrogenation catalyst including initiating regeneration by passing a regeneration gas over the catalyst, monitoring regeneration by comparing the oxygen concentration of the regeneration gas before and after being passed over the catalyst, and ceasing regeneration when the oxygen concentration of the regeneration gas after passed over the catalyst is at least 90% of the concentration of the regeneration gas before being passed over the catalyst.
    Type: Application
    Filed: November 21, 2019
    Publication date: May 21, 2020
    Applicant: NOVA Chemicals (International) S.A.
    Inventors: Shahin Goodarznia, Vasily Simanzhenkov, Kamal Serhal
  • Publication number: 20200157023
    Abstract: A process, a system, and an apparatus are provided for converting a lower alkane to an alkene. Oxygen and the lower alkane are provided to an ODH reactor to convert at least a portion of the lower alkane to an alkene. An ODH stream comprising the alkene, an oxygenate, steam, and a carbon-based oxide is produced. The bulk of the oxygenate is removed from the ODH outlet stream by non-dilutive cooling, with residual oxygenate being removed using dilutive quenching with a carbonate. Subsequently, separation of the carbon-based oxide from the alkene is achieved using a caustic tower, which also produces spent caustic in the form of a carbonate, which is then used as the carbonate for dilutive quenching. Dilutive quenching using a carbonate allows conversion of the oxygenate to an acetate, which can then be used to simplify separation of the oxygenate from water.
    Type: Application
    Filed: October 9, 2019
    Publication date: May 21, 2020
    Applicant: NOVA Chemicals (International) S.A.
    Inventors: Bolaji Olayiwola, Vasily Simanzhenkov, Shahin Goodarznia, Kamal Serhal
  • Patent number: 10647635
    Abstract: In some embodiments provided herein are processes for controlling carbon dioxide output levels coming from an oxidative dehydrogenation (ODH) process. Carbon dioxide output from an ODH process includes that produced in the ODH reaction and carry over when carbon dioxide is used as an inert diluent. Under certain circumstances carbon dioxide can also be consumed in the ODH process by acting as an oxidizing agent. By varying the amount of steam introduced into the ODH process an operator may alter the degree to which carbon dioxide acts as an oxidizing agent. This in turn allows a level of control in the degree to which carbon dioxide is consumed in the process, effecting overall carbon dioxide output. Minimizing the carbon dioxide output provides an opportunity to limit or eliminate the requirement for release of carbon dioxide into the atmosphere.
    Type: Grant
    Filed: October 19, 2018
    Date of Patent: May 12, 2020
    Assignee: NOVA Chemicals (International) S.A.
    Inventors: Vasily Simanzhenkov, Shahin Goodarznia
  • Publication number: 20200123085
    Abstract: Provided in this disclosure is a process for the oxidative dehydrogenation of a lower alkane into a corresponding alkene. The process includes providing a gas stream comprising the lower alkane to a reactor; contacting, in the oxidative dehydrogenation reactor, the lower alkane with a catalyst that includes a mixed metal oxide; and providing to the last 50% of the oxidative dehydrogenation reactor a stream comprising from 0.01 vol. % to 10 vol. % of a C1-C3 alcohol.
    Type: Application
    Filed: October 16, 2019
    Publication date: April 23, 2020
    Applicant: NOVA Chemicals (International) S.A.
    Inventors: Bolaji Olayiwola, Vasily Simanzhenkov, Shahin Goodarznia, Mohamed Aiffa
  • Patent number: 10626066
    Abstract: Ethane may be catalytically oxidatively dehydrogenated to ethylene at high conversions and high selectivity in a circulating fluidized bed (CFB) reactor in the presence of oxygen in the feed in an amount above the flammability limit. The reactor has an attached regeneration reactor to regenerate the catalyst and cycle back to the CFB.
    Type: Grant
    Filed: October 8, 2015
    Date of Patent: April 21, 2020
    Assignee: NOVA Chemicals (International) S.A.
    Inventors: Vasily Simanzhenkov, Shahin Goodarznia, Xiaoliang Gao, Kamal Serhal, Leonid Kustov, Aleksey Kucherov, Elena Finashina