Patents by Inventor Shailesh Singh Bhaisora

Shailesh Singh Bhaisora has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8758458
    Abstract: A gasifier includes a combustion chamber in which a fuel is burned to produce a syngas and a particulated solid residue. A quench chamber is disposed downstream of the combustion chamber. A dip tube is disposed coupling the combustion chamber to the quench chamber. The syngas is directed to contact liquid coolant in the quench chamber and produce a cooled syngas. A draft tube is disposed surrounding the dip tube such that an annular passage is formed. A baffle is disposed proximate to an exit path of the quench chamber. The cooled syngas is directed through the annular passage and impacted against the baffle so as to remove entrained liquid content from the cooled syngas before it is directed through the exit path. A cross sectional area of the annular passage is larger towards the bottom of the quench chamber and smaller towards the top of the quench chamber.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: June 24, 2014
    Assignee: General Electric Company
    Inventors: Prashant Tiwari, Gregory Michael Laskowski, Judeth Brannon Corry, Helge Burghard Herwig Klockow, Allyson Joy Jimenez-Huyke, Shailesh Singh Bhaisora, Steven Craig Russell, Karl Hardcastle, Jennifer Lynn Moyer, Scott Reginald Parent, Yulianto Salahuddin Mohsin
  • Patent number: 8673036
    Abstract: A gasifier includes a combustion chamber in which a fuel is burned to produce a syngas and a particulated solid residue. A quench chamber having a liquid coolant is disposed downstream of the combustion chamber. A dip tube couples the combustion chamber to the quench chamber. The syngas is directed from the combustion chamber to the quench chamber via the dip tube to contact the liquid coolant and produce a cooled syngas. A draft tube surrounds the dip tube such that an annular passage is formed between the draft tube and the dip tube. An asymmetric or symmetric faceted baffle is disposed proximate to an exit path of the quench chamber. The cooled syngas is directed through the annular passage and impacted against the baffle so as to remove entrained liquid content from the cooled syngas before the cooled syngas is directed through the exit path.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: March 18, 2014
    Assignee: General Electric Company
    Inventors: Prashant Tiwari, Gregory Michael Laskowski, Judeth Brannon Corry, Helge Burghard Herwig Klockow, Allyson Joy Jimenez-Huyke, Shailesh Singh Bhaisora, Steven Craig Russell, Karl Hardcastle, Jennifer Lynn Moyer, Scott Reginald Parent, Yulianto Salahuddin Mohsin
  • Publication number: 20130011308
    Abstract: A gasifier includes a combustion chamber in which a fuel is burned to produce a syngas and a particulated solid residue. A quench chamber is disposed downstream of the combustion chamber. A dip tube is disposed coupling the combustion chamber to the quench chamber. The syngas is directed to contact liquid coolant in the quench chamber and produce a cooled syngas. A draft tube is disposed surrounding the dip tube such that an annular passage is formed. A baffle is disposed proximate to an exit path of the quench chamber. The cooled syngas is directed through the annular passage and impacted against the baffle so as to remove entrained liquid content from the cooled syngas before it is directed through the exit path. A cross sectional area of the annular passage is smaller towards the bottom of the quench chamber and larger towards the top of the quench chamber.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 10, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Prashant Tiwari, Gregory Michael Laskowski, Judeth Brannon Corry, Helge Burghard Herwig Klockow, Allyson Joy Jimenez-Huyke, Shailesh Singh Bhaisora, Steven Craig Russell, Karl Hardcastle, Jennifer Lynn Moyer, Scott Reginald Parent, Yulianto Salahuddin Mohsin
  • Publication number: 20130011307
    Abstract: A gasifier includes a combustion chamber in which a fuel is burned to produce a syngas and a particulated solid residue. A quench chamber having a liquid coolant is disposed downstream of the combustion chamber. A dip tube couples the combustion chamber to the quench chamber. The syngas is directed from the combustion chamber to the quench chamber via the dip tube to contact the liquid coolant and produce a cooled syngas. A draft tube surrounds the dip tube such that an annular passage is formed between the draft tube and the dip tube. An asymmetric or symmetric faceted baffle is disposed proximate to an exit path of the quench chamber. The cooled syngas is directed through the annular passage and impacted against the baffle so as to remove entrained liquid content from the cooled syngas before the cooled syngas is directed through the exit path.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 10, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Prashant Tiwari, Gregory Michael Laskowski, Judeth Brannon Corry, Helge Burghard Herwig Klockow, Allyson Joy Jimenez-Huyke, Shailesh Singh Bhaisora, Steven Craig Russell, Karl Hardcastle, Jennifer Lynn Moyer, Scott Reginald Parent, Yulianto Salahuddin Mohsin
  • Patent number: 8240993
    Abstract: An air distribution system for manipulating a boundary layer of air across a wind turbine rotor blade. The wind turbine rotor blade includes at least one sidewall that defines a cavity therein. The sidewall extends between a leading edge and an axially-spaced trailing edge, and defines a chordwise axis between the leading edge and the trailing edge. The air distribution system includes a plurality of bleed flow assemblies that are positioned within the rotor blade and are configured to discharge air into the boundary layer to reduce a separation of the boundary layer from the rotor blade. Each bleed flow assembly of the plurality of bleed flow assemblies includes a bleed flow conduit that is coupled to an inner surface of the sidewall and is oriented with respect to the chordwise axis between the leading edge and the trailing edge. The bleed flow conduit is configured to channel air through the rotor blade.
    Type: Grant
    Filed: January 4, 2011
    Date of Patent: August 14, 2012
    Assignee: General Electric Company
    Inventors: Shailesh Singh Bhaisora, Narasimha Shastri, Anurag Gupta
  • Patent number: 8177145
    Abstract: A feed injector system comprises a movable central member, a first member substantially concentric with the central member to define a first channel for conveying a first fluid oxidizer stream, a second member substantially concentric with the first member to define a second channel for conveying a fuel feed, and a third member substantially concentric with the second member to define a third channel for conveying a second fluid oxidizer steam. The first member and the second member are configured to enhance instability in the fuel feed emanating from the second channel.
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: May 15, 2012
    Assignee: General Electric Company
    Inventors: Shailesh Singh Bhaisora, Dustin Wayne Davis, Ravindra Gopaldas Devi
  • Publication number: 20110206507
    Abstract: An air distribution system for manipulating a boundary layer of air across a wind turbine rotor blade. The wind turbine rotor blade includes at least one sidewall that defines a cavity therein. The sidewall extends between a leading edge and an axially-spaced trailing edge, and defines a chordwise axis between the leading edge and the trailing edge. The air distribution system includes a plurality of bleed flow assemblies that are positioned within the rotor blade and are configured to discharge air into the boundary layer to reduce a separation of the boundary layer from the rotor blade. Each bleed flow assembly of the plurality of bleed flow assemblies includes a bleed flow conduit that is coupled to an inner surface of the sidewall and is oriented with respect to the chordwise axis between the leading edge and the trailing edge. The bleed flow conduit is configured to channel air through the rotor blade.
    Type: Application
    Filed: January 4, 2011
    Publication date: August 25, 2011
    Inventors: Shailesh Singh Bhaisora, Narasimha Shastri, Anurag Gupta
  • Publication number: 20100325954
    Abstract: A gasifier includes a combustion chamber in which a combustible fuel is burned to produce a syngas and a particulated solid residue. A quench chamber having a liquid coolant is disposed downstream of the combustion chamber. A dip tube is disposed coupling the combustion chamber to the quench chamber. The syngas is directed from the combustion chamber to the quench chamber via the dip tube to contact the liquid coolant and produce a cooled syngas. A draft tube is disposed surrounding the dip tube such that an annular passage is formed between the draft tube and the dip tube. An asymmetric or symmetric baffle is disposed proximate to an exit path of the quench chamber. The cooled syngas is directed through the annular passage and impacted against the asymmetric or symmetric baffle so as to remove entrained liquid content from the cooled syngas before the cooled syngas is directed through the exit path.
    Type: Application
    Filed: June 30, 2009
    Publication date: December 30, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Prashant Tiwari, Gregory Michael Laskowski, Judeth Brannon Corry, Helge Burghard Herwig Klockow, Allyson Joy Jimenez-Huyke, Shailesh Singh Bhaisora, Steven Craig Russell, Karl Hardcastle, Jennifer Lynn Moyer, Scott Reginald Parent, Yulianto Salahuddin Mohsin
  • Publication number: 20100107642
    Abstract: A feed injector system comprises a movable central member, a first member substantially concentric with the central member to define a first channel for conveying a first fluid oxidizer stream, a second member substantially concentric with the first member to define a second channel for conveying a fuel feed, and a third member substantially concentric with the second member to define a third channel for conveying a second fluid oxidizer steam. The first member and the second member are configured to enhance instability in the fuel feed emanating from the second channel.
    Type: Application
    Filed: November 4, 2008
    Publication date: May 6, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Shailesh Singh Bhaisora, Dustin Wayne Davis, Ravindra Gopaldas Devi
  • Patent number: 7572432
    Abstract: Disclosed herein is a method comprising combusting a feed stream to form combustion products; and reforming the combustion products to produce a gaseous composition comprising hydrogen. Disclosed herein too is a method for producing hydrogen comprising introducing a feed stream comprising natural gas and air or oxygen into a cyclical compression chamber; compressing the feed stream in the cyclical compression chamber; combusting the feed stream in the cyclical compression chamber to produce combustion products; discharging the combustion products from the cyclical compression chamber into a reforming section; and reforming the combustion products with steam in the reforming section to produce a gaseous composition comprising hydrogen.
    Type: Grant
    Filed: April 13, 2004
    Date of Patent: August 11, 2009
    Assignee: General Electric Company
    Inventors: Sauri Gudlavalleti, Michael Bowman, Chellappa Balan, Shailesh Singh Bhaisora, Andrei Colibaba-Evulet, Narayan Ramesh
  • Patent number: 7261064
    Abstract: A combustion engine system comprises a plurality of cylinders configured to combust a mixed fuel to produce an exhaust gas and at least one reforming cylinder configured to receive a first portion of a fuel and deliver a reformed hydrogen-containing gas. The hydrogen-containing gas is introduced into a second portion of the fuel to form the mixed fuel to reduce emission from the combustion engine system.
    Type: Grant
    Filed: October 1, 2004
    Date of Patent: August 28, 2007
    Assignee: General Electric Company
    Inventors: Shailesh Singh Bhaisora, Michael John Bowman, Sauri Gudlavalleti
  • Publication number: 20040265158
    Abstract: A method for co-producing hydrogen and electrical power comprises utilizing an intermittent renewable energy source to generate energy for producing hydrogen and oxygen and subsequently transferring at least a portion of the energy to a production system to produce the hydrogen and the oxygen. The current technique further comprises channeling at least a portion of the hydrogen to a hydrogen-delivery system configured to deliver the hydrogen from the hydrogen-delivery system to at least one of a power generation system or a hydrogen-storage system and channeling at least a portion of the oxygen to an oxygen delivery system configured to deliver the oxygen from the oxygen delivery system to a biomass gasification system that produces a synthesis gas by partial oxidation of a biomass feedstock. Further, this technique includes channeling at least a portion of the synthesis gas to the power generation system to produce electrical power therefrom.
    Type: Application
    Filed: June 30, 2003
    Publication date: December 30, 2004
    Inventors: Krishna Rao Boyapati, Peeush Kumar Bishnoi, Shailesh Singh Bhaisora