Patents by Inventor Shain-Jer Doong

Shain-Jer Doong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9518239
    Abstract: A process for the removal of sulfur compounds from a feed stream. A first separation zone removes sulfur compounds and produces a partially cleaned stream. A first adsorption zone adsorbs the remaining organic sulfur compounds on a regenerable adsorbent a produces a treated gas stream. A portion of the treated gas stream may regenerate the adsorbent in the first adsorption zone by removing organic sulfur compounds. The organic sulfur compound rich stream can be passed to a non-regenerable adsorption zone. The non-regenerable adsorption zone will separate out the organic sulfur compounds and provide a re-treated gas stream which may be recycled to a portion of the process. The non-regenerable adsorption zone may include regenerable adsorbent, but the zone is not operated to regenerate the adsorbent while it is in the non-regenerable adsorption zone.
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: December 13, 2016
    Assignee: UOP LLC
    Inventors: Shain-Jer Doong, Jayant Kumar Gorawara, Lubo Zhou
  • Patent number: 9517431
    Abstract: A process for reducing the size of sulfur removal units is presented. The process includes passing a regeneration gas from a regenerated contaminant adsorption unit through a fixed bed adsorber. The fixed bed adsorber adsorbs sulfur compounds above an equilibrium condition and releases adsorbed sulfur compounds below the equilibrium condition. The peak levels of sulfur in the regeneration gas are reduced and the processing of the regeneration gas reduces the size of sulfur removal units.
    Type: Grant
    Filed: September 22, 2014
    Date of Patent: December 13, 2016
    Assignee: UOP LLC
    Inventors: Shain-Jer Doong, Christopher B. McIlroy
  • Patent number: 9505683
    Abstract: A process for treatment of a natural gas stream, or other methane containing stream that passes through a guard bed for removal of mercury and hydrolysis of COS, followed by treatment with an absorbent unit containing an amine solvent for removal of carbon dioxide and hydrogen sulfide. The gas is then dried by a molecular sieve bed. The regeneration gas for the molecular sieve adsorbent bed is chilled to remove liquid hydrocarbons and sulfur compounds. The process is accomplished without the use of an absorbent unit to remove the sulfur compounds.
    Type: Grant
    Filed: May 21, 2014
    Date of Patent: November 29, 2016
  • Patent number: 9422496
    Abstract: A process for treating a gas stream, such as natural gas, comprising a process design that prevents the formation of undesired sulfur and sulfates from the reaction of oxygen and sulfur is disclosed. After water is removed from the gas stream, a portion of the dried gas stream is sent through a cooled adsorbent bed that has a first layer to remove sulfur compounds and then a layer to remove oxygen. There may be additional layers of adsorbent to remove other contaminants. The gas stream that is then heated to regenerate an adsorbent bed no longer contains sulfur and oxygen and undesirable reactions of sulfur and oxygen are avoided.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: August 23, 2016
    Assignee: UOP LLC
    Inventors: Keith R. Clark, Christopher B. McIlroy, Michael E. Clark, Ali Hatami, Shain-Jer Doong
  • Publication number: 20160145518
    Abstract: A process for treating a gas stream, such as natural gas, comprising a process design that prevents the formation of undesired sulfur and sulfates from the reaction of oxygen and sulfur is disclosed. After water is removed from the gas stream, a portion of the dried gas stream is sent through a cooled adsorbent bed that has a first layer to remove sulfur compounds and then a layer to remove oxygen. There may be additional layers of adsorbent to remove other contaminants. The gas stream that is then heated to regenerate an adsorbent bed no longer contains sulfur and oxygen and undesirable reactions of sulfur and oxygen are avoided.
    Type: Application
    Filed: November 25, 2014
    Publication date: May 26, 2016
    Inventors: Keith R. Clark, Christopher B. McIlroy, Michael E. Clark, Ali Hatami, Shain-Jer Doong
  • Publication number: 20160082382
    Abstract: A process for reducing the size of sulfur removal units is presented. The process includes passing a regeneration gas from a regenerated contaminant adsorption unit through a fixed bed adsorber. The fixed bed adsorber adsorbs sulfur compounds above an equilibrium condition and releases adsorbed sulfur compounds below the equilibrium condition. The peak levels of sulfur in the regeneration gas are reduced and the processing of the regeneration gas reduces the size of sulfur removal units.
    Type: Application
    Filed: September 22, 2014
    Publication date: March 24, 2016
    Inventors: Shain-Jer Doong, Christopher B. McIlroy
  • Publication number: 20160032206
    Abstract: A process for the removal of sulfur compounds from a feed stream. A first separation zone removes sulfur compounds and produces a partially cleaned stream. A first adsorption zone adsorbs the remaining organic sulfur compounds on a regenerable adsorbent a produces a treated gas stream. A portion of the treated gas stream may regenerate the adsorbent in the first adsorption zone by removing organic sulfur compounds. The organic sulfur compound rich stream can be passed to a non-regenerable adsorption zone. The non-regenerable adsorption zone will separate out the organic sulfur compounds and provide a re-treated gas stream which may be recycled to a portion of the process. The non-regenerable adsorption zone may include regenerable adsorbent, but the zone is not operated to regenerate the adsorbent while it is in the non-regenerable adsorption zone.
    Type: Application
    Filed: July 29, 2014
    Publication date: February 4, 2016
    Inventors: Shain-Jer Doong, Jayant Kumar Gorawara, Lubo Zhou
  • Patent number: 9238601
    Abstract: Methods of removing free oxygen from a hydrocarbon stream are described. A hydrocarbon stream containing free oxygen is contacted with an adsorbent comprising a metal in a reduced state. The free oxygen in the hydrocarbon stream reacts with the metal in the reduced state to form oxidized metal and a reduced oxygen hydrocarbon stream. Syngas is made from a portion of the reduced oxygen hydrocarbon stream. A regeneration gas stream comprising a mixture of the syngas and another portion of the reduced oxygen hydrocarbon stream is contacted with the oxidized metal to reduce the oxidized metal to form the metal in the reduced state.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: January 19, 2016
    Assignee: UOP LLC
    Inventors: Mark G. Riley, Shain-Jer Doong
  • Publication number: 20150105599
    Abstract: Methods of removing free oxygen from a hydrocarbon stream are described. A hydrocarbon stream containing free oxygen is contacted with an adsorbent comprising a metal in a reduced state. The free oxygen in the hydrocarbon stream reacts with the metal in the reduced state to form oxidized metal and a reduced oxygen hydrocarbon stream. Syngas is made from a portion of the reduced oxygen hydrocarbon stream. A regeneration gas stream comprising a mixture of the syngas and another portion of the reduced oxygen hydrocarbon stream is contacted with the oxidized metal to reduce the oxidized metal to form the metal in the reduced state.
    Type: Application
    Filed: October 15, 2013
    Publication date: April 16, 2015
    Applicant: UOP LLC
    Inventors: Mark G. Riley, Shain-Jer Doong
  • Publication number: 20150038759
    Abstract: The invention involves a process for treating a natural gas stream comprising sending the natural gas stream first to an adsorbent unit for removal of mercury. Then the gas stream is sent to an absorbent unit containing a chemical solvent and a physical solvent for removal of carbon dioxide, hydrogen sulfide, carbonyl sulfide and organic sulfur compounds to produce a partially purified natural gas stream. This stream is dehydrated and becomes the product stream. The partially purified natural gas stream to a dehydration unit to remove water to produce a natural gas product stream. The impurities absorbed by the absorption unit are removed and a liquid stream is separated that contains the sulfur impurities. This liquid stream may be purified and stabilized before being shipped for further treatment.
    Type: Application
    Filed: July 9, 2014
    Publication date: February 5, 2015
    Inventors: Shain-Jer Doong, Lubo Zhou
  • Patent number: 8936669
    Abstract: A temperature swing adsorption system includes a first adsorption bed configured to receive a feed stream and adsorb a contaminant from the feed stream to produce a product stream, a second adsorption bed configured to receive a portion of the product stream and a cooling stream to reduce a temperature of the second adsorption bed, a third adsorption bed configured to receive the heated product stream to increase a temperature of the third adsorption bed; a separation system to separate the cooled product stream into a first component stream and a second component stream, and a fourth adsorption bed configured to receive the first component stream and to enrich an adsorptive concentration of the first component stream. The enriched first component stream is directed to the second adsorption bed to provide the cooling stream.
    Type: Grant
    Filed: May 6, 2013
    Date of Patent: January 20, 2015
    Assignee: UOP LLC
    Inventors: Shain-Jer Doong, Christopher B. McIlroy
  • Publication number: 20140357926
    Abstract: A process for treatment of a natural gas stream, or other methane containing stream that passes through a guard bed for removal of mercury and hydrolysis of COS, followed by treatment with an absorbent unit containing an amine solvent for removal of carbon dioxide and hydrogen sulfide. The gas is then dried by a molecular sieve bed. The regeneration gas for the molecular sieve adsorbent bed is chilled to remove liquid hydrocarbons and sulfur compounds. The process is accomplished without the use of an absorbent unit to remove the sulfur compounds.
    Type: Application
    Filed: May 21, 2014
    Publication date: December 4, 2014
  • Publication number: 20140326136
    Abstract: A temperature swing adsorption system includes a first adsorption bed configured to receive a feed stream and adsorb a contaminant from the feed stream to produce a product stream, a second adsorption bed configured to receive a portion of the product stream and a cooling stream to reduce a temperature of the second adsorption bed, a third adsorption bed configured to receive the heated product stream to increase a temperature of the third adsorption bed; a separation system to separate the cooled product stream into a first component stream and a second component stream, and a fourth adsorption bed configured to receive the first component stream and to enrich an adsorptive concentration of the first component stream. The enriched first component stream is directed to the second adsorption bed to provide the cooling stream.
    Type: Application
    Filed: May 6, 2013
    Publication date: November 6, 2014
    Inventors: Shain-Jer Doong, Christopher B. McIlroy
  • Patent number: 8685146
    Abstract: Processes and apparatuses are provided for preparing liquified natural gas from a natural gas feed that comprises C5 to C7 hydrocarbons and C8 or greater hydrocarbons. An exemplary process includes effecting the preferential adsorption of the C8 or greater hydrocarbons from the natural gas feed over adsorption of hydrocarbons having less than 8 carbon atoms to provide a C8-depleted natural gas stream. The process continues with effecting the preferential adsorption of the C5 to C7 hydrocarbons from the C8-depleted natural gas stream over adsorption of hydrocarbons having less than 5 carbon atoms to form a C5 to C8-depleted natural gas stream. The C5 to C7 hydrocarbons are preferentially adsorbed with higher selectivity and capacity than adsorption of the C5 to C7 hydrocarbons during preferentially adsorbing the C8 or greater hydrocarbons. The C5 to C8-depleted natural gas stream is then liquified.
    Type: Grant
    Filed: May 1, 2012
    Date of Patent: April 1, 2014
    Assignee: UOP LLC
    Inventors: Lubo Zhou, Shain-Jer Doong, Bradley P. Russell, Henry Rastelli
  • Publication number: 20130291723
    Abstract: Processes and apparatuses are provided for preparing liquified natural gas from a natural gas feed that comprises C5 to C7 hydrocarbons and C8 or greater hydrocarbons. An exemplary process includes effecting the preferential adsorption of the C8 or greater hydrocarbons from the natural gas feed over adsorption of hydrocarbons having less than 8 carbon atoms to provide a C8-depleted natural gas stream. The process continues with effecting the preferential adsorption of the C5 to C7 hydrocarbons from the C8-depleted natural gas stream over adsorption of hydrocarbons having less than 5 carbon atoms to form a C5 to C8-depleted natural gas stream. The C5 to C7 hydrocarbons are preferentially adsorbed with higher selectivity and capacity than adsorption of the C5 to C7 hydrocarbons during preferentially adsorbing the C8 or greater hydrocarbons. The C5 to C8-depleted natural gas stream is then liquified.
    Type: Application
    Filed: May 1, 2012
    Publication date: November 7, 2013
    Applicant: UOP LLC
    Inventors: Lubo Zhou, Shain-Jer Doong, Bradley P. Russell, Henry Rastelli
  • Patent number: 8500884
    Abstract: One exemplary embodiment can be a vessel. The vessel can include a body, an inlet, and an impermeable impingement plate. The body may include a substantially cylindrical structure orientated substantially horizontally, and first and second heads coupled at opposing ends of the substantially cylindrical structure. Generally, the body forms an interior space, and a lower portion of the body forms a trough having a length and a width. The inlet can communicate with the interior space of the vessel. Typically, the impermeable impingement plate has an impingement surface. The impermeable impingement plate may have a first side and a second side extending substantially the length of the trough. The first and second sides may be substantially parallel and spaced apart across at least a portion of the width of the trough.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: August 6, 2013
    Assignee: UOP LLC
    Inventors: Shain-Jer Doong, Hadjira Iddir
  • Patent number: 8388732
    Abstract: The present invention relates to an integrated membrane/adsorbent process and system for removal of carbon dioxide from natural gas on a ship that houses natural gas purification equipment. Additional membrane units or adsorbent beds are used to reduce the amount of product gas that is lost in gas streams that are used to regenerate the adsorbent beds. These systems produce a product stream that meets the specifications of less than 50 parts per million carbon dioxide in natural gas for liquefaction.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: March 5, 2013
    Assignee: UOP LLC
    Inventors: Shain-Jer Doong, Lubo Zhou, Dennis J. Bellville, Mark E. Schott, Leonid Bresler, John M. Foresman
  • Publication number: 20120073437
    Abstract: One exemplary embodiment can be a vessel. The vessel can include a body, an inlet, and an impermeable impingement plate. The body may include a substantially cylindrical structure orientated substantially horizontally, and first and second heads coupled at opposing ends of the substantially cylindrical structure. Generally, the body forms an interior space, and a lower portion of the body forms a trough having a length and a width. The inlet can communicate with the interior space of the vessel. Typically, the impermeable impingement plate has an impingement surface. The impermeable impingement plate may have a first side and a second side extending substantially the length of the trough. The first and second sides may be substantially parallel and spaced apart across at least a portion of the width of the trough.
    Type: Application
    Filed: September 27, 2010
    Publication date: March 29, 2012
    Applicant: UOP, LLC
    Inventors: Shain-Jer Doong, Hadjira Iddir
  • Publication number: 20110315010
    Abstract: The present invention relates to an integrated membrane/adsorbent process and system for removal of carbon dioxide from natural gas on a ship that houses natural gas purification equipment. Additional membrane units or adsorbent beds are used to reduce the amount of product gas that is lost in gas streams that are used to regenerate the adsorbent beds. These systems produce a product stream that meets the specifications of less than 50 parts per million carbon dioxide in natural gas for liquefaction.
    Type: Application
    Filed: May 11, 2011
    Publication date: December 29, 2011
    Applicant: UOP LLC
    Inventors: Shain-Jer Doong, Lubo Zhou, Dennis J. Bellville, Mark E. Schott, Leonid Bresler, John M. Foresman
  • Patent number: 7938893
    Abstract: A system for the selective removal of CO2, H2S, and H2 from a gaseous fluid mixture comprising CO2, H2S, and H2, which system includes a first membrane section having a nonporous metal oxide membrane, a second membrane section having a CO2-selective membrane, and a third membrane section having an H2-selective membrane. Each membrane section has a feed side and a permeate side and the membrane sections are arranged in series whereby the gaseous fluid mixture contacts the feed side, in sequence, of the first membrane section, the second membrane section and the third membrane section, resulting first in the separation or removal of H2S, second in the separation or removal of CO2, and third in the separation or removal of H2. The process can be used to process synthesis gas generated from the gasification or reforming of carbonaceous materials for hydrogen production and carbon dioxide capture.
    Type: Grant
    Filed: August 28, 2006
    Date of Patent: May 10, 2011
    Assignee: Gas Technology Institute
    Inventors: Shain-Jer Doong, Raja A. Jadhav, Francis Lau